Experimental Probability	
Example 1) In Lions home opener against St. Louis, Matthew Stafford completed 32 passes out of 48 attempts. Find the experimental probability of Stafford completing a pass.	Your Turn 1) In the NFC Championship game, Colin Kaepemick completed 16 passes out of 21 attempts. Find the experimental probability of Kaepemick completing a pass.
$\frac{32}{110} = \frac{2}{3} = 66.7$	0, 16=0.76
48 3	$\frac{10}{3} = 0.76$ $\frac{10}{21} = 76.2\%$
Example 2) A class tossed coins & recorded 161 heads and 179 tails. What is the experimental probability of heads?	Your Turn 2) A class tossed coins & recorded 150 heads and 100 tails. What is the experimental probability of tails?
161 Total: 161+179=34	0
tails. What is the experimental probability of heads? Total: 161+179=34	$P(\text{tails}) = \frac{100}{250} = \frac{1}{5}$
340	1 (1ams) 250 5
	=40%
	= 1010

Theoretical Probability	

Example 3) Find the theoretical probability of getting an even number when your oll a number cube.

$$2,4,6$$
 $P(even) = \frac{3}{6} = \frac{1}{2} = 50\%$

Example 4) A jar contains 30 red marbles, 50 blue marbles, and 20 white marbles. You pick one marble from the jar at random. Find the theoretical probability that you will chose a red or blue marble.

$$P(\text{red or blue}) = \frac{80}{100} = \frac{4}{5}$$

= 80%

Your Turn 3) A jar contains 30 red marbles and 50 blue marbles. You pick one marble from the jar at random. Find the theoretical probability that you will chose a red marble.

$$P(red) = \frac{30}{80} = \frac{3}{8} = 37.5$$

Your Turn 4) Suppose you roll a number cube. Find the theoretical probability of rolling a number less than 5.

$$P(<5) = \frac{4}{6} = \frac{2}{3} = 66.7\%$$

Example 1) Fold your hands so your fingers interlace. Do you naturally place your left or right thumb on top? Placing your left thumb on top is a dominant genetic trait.

Suppose a child has parents who both have just one dominant gene. Make a table. Let G represent the dominant gene (left thumb on top) & let g represent the recessive gene (right thumb on top). What is the theoretical probability that a child will naturally place the left thumb on top?

D(1054) - 3 = 75%		Gene from Mother		
Thumb/- 4			G	g
	Gene from Father	G	99	49
		q	6 a	ag
		0	ر،	Ud

Your Turn 1)

Suppose a child has a father whose gene pair is gg and the mother has Gg. Make a table. What is the theoretical probability that a child will naturally place the left thumb on top?

