## Multiplication Counting Principle

The number of ways to arrange **n** objects in a particular order is expressed using **factorial notation**:

"n factorial" = 
$$n! = n*(n-1)*...*3*2*1$$

Example: Ways to arrange 4 posters = 4!

$$4! = 4 * 3 * 2 * 1 = 24$$

#### **Practice**

Calculate the following:

$$3! = 3 \cdot 2 \cdot 1 = 6$$

$$11! = || \cdot || \cdot || \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$= 39,916,800$$

## **Calculator Shortcut**

- Type in the number
- Menu -> Probability -> Factorial

#### Calculate:

$$8! = 40,320$$
 $12! = 479,001,600$ 

Example 2: Eight schools are competing in a choral competition. How many possibilities are there for arrangements of 1st, 2nd, and 3rd place?

- · 8 possibilities for 1st place.
- . 7 For 2nd place. 6 for 3rd place

8.7.6 = 336 possibilities.

#### **Permutations**

To calculate the number of permutations of  $\mathbf{n}$  objects using  $\mathbf{r}$  of those objects, when **order matters**:

$$n \Pr = \frac{n!}{(n-r)!}$$

Choral example:

$$8^{\frac{1}{3}} = \frac{8!}{(8-3)!} = \frac{8!}{5!}$$

$$= \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$$

$$= 336$$

Calculator:

$$n^{P_r}(8,3) = 336$$

# **Permutations**

Poster example: 
$$4! = \frac{4 \cdot 3 \cdot 2 \cdot 1}{1} = 2^{4}$$

## Combinations

To calculate the number of combinations of **n** objects using **r** of those objects, when **order does not matter**:

$$nCr = \frac{n!}{r!(n-r)!}$$

Example 3: There are 20 markers in a can. How many ways can I choose 5 markers?

Does order matter? No

$$n C_{r} = \frac{n!}{r!(n-r)!}$$

$$20 C_{5} = \frac{20!}{5!(20-5)!} = \frac{20\cdot19\cdot18\cdot17\cdot16\cdot15\cdot14\cdots}{(5\cdot4\cdot3\cdot2\cdot1)(15\cdot14\cdot13\cdot12\cdot11\cdot10\cdot9\cdot8\cdot7\cdots)}$$

$$n C_{r}(20,5) = |5,504|$$