Bellwork 3.9.12

1. How do we know if two triangles are similar?

2. Give me three equivalent ratios to: $\frac{3}{6}$

Ratio	A comparison of two quantities.	to, :	
Proportion	A statement that two ratios are equal.		
Scale	Compares length in a drawing to actual length.		
Similar	(1) Corresponding angles are congruent.(2) Corresponding sides are proportional.		
Similarity Ratio	Ratio of lengths of corresponding sides.		
	1		I

Bellwork 4.8.13

Name the postulate or theorem you can use to prove the triangles congruent.

1.

2.

3

7.3 Proving Triangles Similar

Postulate 7-1

Angle-Angle Similarity (AA ∼) Postulate

If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

 $\triangle TRS \sim \triangle PLM$

1 EXAMPLE Using the AA \sim Postulate

Explain why the triangles are similar. Write a similarity statement.

 $\overline{MX} \perp \overline{AB}$. Explain why the triangles are similar. Write a similarity statement.

Theorem 7-1 Side-Angle-Side Similarity (SAS ∼) Theorem

If an angle of one triangle is congruent to an angle of a second triangle, and the sides including the two angles are proportional, then the triangles are similar.

2 **EXAMPLE** Using Similarity Theorems

Explain why the triangles must be similar.

Write a similarity statement.

Z

8

Bellwork

4.9.13

Can you conclude the triangles are similar? If so, write a similarity statement and name the postulate or theorem you used. If not, explain.

Theorem 7-2

Side-Side-Side Similarity (SSS \sim) Theorem

If the corresponding sides of two triangles are proportional, then the triangles are similar.

Explain why the triangles must be similar.

Write a similarity statement.

3 EXAMPLE Finding Lengths in Similar Triangles

Are the Triangles similar? If they are, find DE.

Find the value of x in the figure at the right.

ABCD is a parallelogram. Find WY.

Bellwork 4.10.13
1. What are the three shortcuts to proving triangles similar?
2. Are all equilateral triangles similar?
3. Are all isosceles triangles similar?

<u>Indirect Measurement:</u> when you use similar triangles to find distances that are difficult to measure directly.

4 EXAMPLE

In sunlight, a cactus casts a 9-ft shadow. At the same time a person 6 ft tall casts a 4-ft shadow. Use similar triangles to find the height of the cactus.

Bellwork 4.11.13

Joan places a mirror 24 ft from the base of a tree. When she stands 3 ft from the mirror, she can see the top of the tree reflected in it. If her eyes are 5 ft above the ground, how tall is the

tree?

ΔUTS ~ _____

ΔKLM ~ _____

ΔHGF ~ ____

Bellwork 3.14.12

Happy Pi Day!

Solve each proportion.

1.
$$\frac{x}{8} = \frac{18}{24}$$

2.
$$\frac{2}{3} = \frac{x}{7}$$

3.
$$\frac{15}{4} = \frac{18}{x}$$

Simplifying Radicals

Simplify the expressions $\sqrt{2} \cdot \sqrt{8}$ and $\sqrt{294} \div \sqrt{3}$.

2 EXAMPLE

Write $\sqrt{\frac{4}{3}}$ in simplest form.

Simplify each expression.

$$\sqrt{5} \cdot \sqrt{10}$$

 $\sqrt{128} \div \sqrt{2}$

$$\frac{\sqrt{6}\cdot\sqrt{3}}{\sqrt{9}}$$