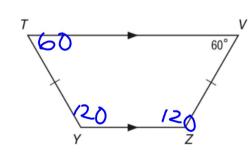
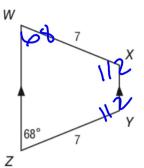
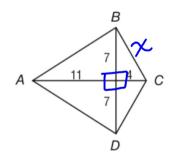

ALGEBRA Find the value of each variable.

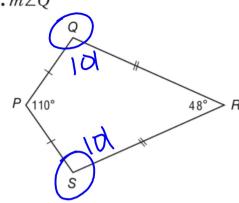
1.



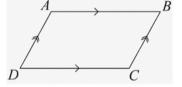


Find each measure.


1. $m \angle T$


2. *m*∠*Y*

 $\mathbf{4.}\,BC$



 $7^{2}+4^{2}=X^{2}$ $49+16=X^{2}$ $\chi^{2}=65$ $\chi=8.06$ $3. m \angle Q$

DEFINITION

A parallelogram IS a guad 4 SIDUS W 2 Pairs

EXAMPLE 4 Try It! Use Angles of a Parallelogram

4. Use the parallelogram shown.

a. Given parallelogram *GHJK*, what is the value of *a*?

$$\alpha = 20$$

(a + 5)° (8a - 5)°

b. What are $m \angle G$, $m \angle H$, $m \angle J$, and $m \angle K$?

Theorem 6-10:

If a quadrilateral is a parallelogram, then

each other

If...

 $\frac{\overline{WX}}{\overline{WZ}} \parallel \frac{\overline{ZY}}{\overline{XY}}$

Then... $\overline{AW} \cong \overline{AY}$ $\overline{AX} \cong \overline{AZ}$

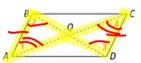
A proof of theorem 6-10 follows.

HABITS OF MIND

Reason Under what conditions can a pair of consecutive angles in a parallelogram be congruent? Explain. MP.2

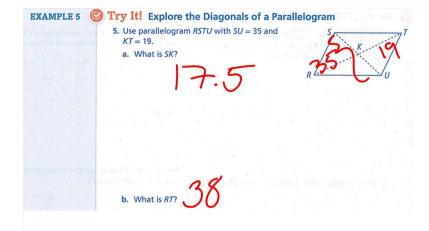
MEN THE FIG. 15

SQUARY FRET ANGLES


MUNICIPAL ANGLES

MUNICIPAL

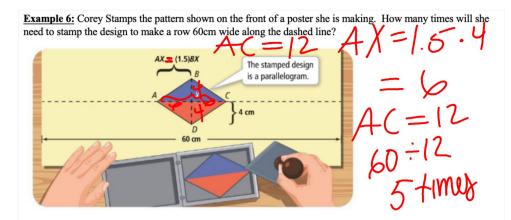
Example 5: \overline{AC} and \overline{BD} are the diagonals of parallelogram, ABCD.


Given: ABCD is a parallelogram.

Prove: $\overline{AQ} \cong \overline{CQ}$, $\overline{BQ} \cong \overline{DQ}$

Thm

Statements	Reasons
1. ABCD is a parallelogram	1. 01(1/4/1
$2. \overline{AB} \cong \overline{DC}$	2. NOW SIDER IN a Harayor alle
$3.\overline{AB} \overline{DC}$	3. Det De 11-9/04M
$4. \angle 1 \cong \angle 4$ and $\angle 2 \cong \angle 3$	4. A COULT INT WINGLES
$5. \Delta ABQ \cong \Delta CDQ$	5. A)A
6. $\overline{AQ} \cong \overline{CQ}$ and $\overline{BQ} \cong \overline{DQ}$	6.


EXAMPLE 6 Try It! Find Unknown Lengths in a Parallelogram

6. Given parallelogram GHJK with PK = 4 and HK = $\frac{2}{3}$ (GJ),

what is GP?

3 8=3(61):

GJ=12 GP=6

HABITS OF MIND

Look for Relationships How can you tell which diagonal of a parallelogram has

the greater length? MP.7

connects the vertices w/ the smaller angles.

In your book: Read Concept Summary and #1-12, page 268 (page 146 in student companion). Tomorrow's HW: page 269 #14, 16-21, 24, 26-28				
•	skip 17 and 26			