Theorems to Prove Quadrilaterals are Parallelograms:

💉 If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

- ❖ If an angle of a quadrilateral is supplementary to both consecutive angles, then the quadrilateral is a parallelogram.
- ❖ If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
- ❖ If one pair of opposite sides of a quadrilateral are both congruent and parallel, then the quadrilateral is a parallelogram.

Determine the value of x and y so that the quadrilateral is a parallelogram.

Is there enough information to prove the quadrilateral is a parallelogram? If so, write a theorem as justification why it is a parallelogram.

1) $\overline{AD}||\overline{BC}|$ and $\overline{AD}\cong\overline{BC}$

2) $\overline{AE}\cong \overline{EC}$ and $\overline{DE}\cong \overline{EB}$

3) $\overline{AB}||\overline{CD}$ and $\overline{AD} \cong \overline{BC}$

4) $\angle ADC \cong \angle CBA$ and

5) $\angle DAB$ is supplementary to $\angle ADC$

6) $\triangle AED \cong \triangle CEB$

∠ABC is supplementary to ∠BCD

Example 3: Find values to make parallelogram.

A) For what values of and s is WXYZ a parallelogram?

B) For what values of a and b is RSTU a parallelogram? Which angle relationship is best to use and why?

Do Try It 3 and Habits of Mind, page 149 in your student companion.

b. If g = 14 and h = 5, is ABCD a parallelogram?

EXAMPLE 3

Try It! Find Values to Make Parallelograms

3. a. If x = 25 and y = 30, is PORS a parallelogram?

HABITS OF MIND

Reason Given algebraic expressions for the angles of a quadrilateral, what properties could you use to decide if the quadrilateral is a parallelog

Theorem 6-14 (converse to 6-10):

If the <u>diagram</u> Sof a quadrilateral <u>bisect</u> each other, there the quadrilateral is a parallelogram.

Example 4: Complete the proof of Theorem 6-14 below.

Given: $\overline{AX}\cong \overline{CX}$ and $\overline{BX}\cong \overline{DX}$

Prove: ABCD is a parallelogram

Statements	Reasons
1. $\overline{AX} \cong \overline{CX}$ and $\overline{BX} \cong \overline{DX}$	1.
2. $\angle AXD \cong \angle CXB$ and $\angle AXB \cong \angle CXD$	2. VLV+ / S
3. $\triangle AXD \cong \triangle CXB$ and $\triangle AXB \cong \triangle CXD$	3. A
4. $\overline{AD} \cong \overline{CB}$ and $\overline{AB} \cong \overline{CD}$	4. CPCTO
5. ABCD is a parallelogram.	5. TWV6-1

Do Try It 4, page 150 in your student companion.

Theorem 6-15:
If
EXAMPLE 4 Try It! Investigate Diagonals to Confirm a Parallelogram
4. For what values of p and q is ABCD a parallelogram? $7p + 1 \qquad 2q + 3$
3q+1 $5p+3$
7p+1=5p+3 $3q+1=2q+3$
シャーン ターン
p=1

Example 5: Are the following quadrilaterals also parallelograms? Explain.

Do Try It 5 and Habits of Mind, page 150 in your student companion.

b. Is EFGH a parallelogram? Explain.

EXAMPLE 5 Try It! Identify a Parallelogram

5. a. Is ABCD a parallelogram? Explain.

of spp. 45

HABITS OF MIND

Reason Given algebraic expressions for the diagonals of a quadrilateral, what properties could you use to decide if the quadrilateral is a parallelogram?

MP.2

None, the diagonals bisect each other but are not necessarily =.

Example 6: A mechanic raises a truck using a lift. For safety, the floor must be horizontal, and the top of the lift must be parallel to the floor. Is the lift shown in a safe position? Explain.

YES, b/c thm b-15

HOLDING THE STALL OF AM

THE

HABITS OF MIND

Make Sense and Persevere How would you describe this problem in your own words?

MP.1

In the book: Read Concept Summary and #1-9, page 276 (page 152 in your student companion.) Tomorrow's HW: page 277 #10, 11, 13, 16-19, 21, 24, (3 possible points), 25, 26A, B