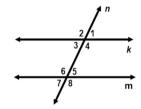
1. Alternate Exterior Angles Proof: Complete the proof by filling in the missing reasons

Given: line m || line k

Prove: $\angle 2 \cong \angle 8$

Statements	Reasons
1. line m line k	1. COLVEST
2. ∠2 ≅ ∠6	2. COLVEST
3. ∠6 ≅ ∠8	3. Vert
4. ∠2 ≅ ∠8	4 a a n St.



3. Given: $m \parallel n$ and $a \parallel b$

Prove: $\angle 3 \cong \angle 13$

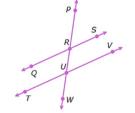
Statements	Justifications	
$m \parallel n$ and $a \parallel b$	GILLA	
$m\angle 3 + m\angle 12 = 180^{\circ}$	SJT,	
$m\angle 12 + m\angle 13 = 180^{\circ}$	m213 55 I	
$m_23+m_212=m_212$	Transitive Property	
	Subtraction Property	

4. In the diagram for #3, $m \ge 8 = 10x + 10$ and $m \ge 12 = 12x - 4$, what is $m \ge 162$, 10x + 10 = 12x - 4 10x + 10 = 12x - 4

Definition of Congruence

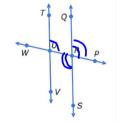
	2. Given:	$\overrightarrow{OS} \parallel \overrightarrow{TV}$	Prove: $m \angle PRQ + m \angle TUW = 18$
--	-----------	---	--

Statements	Justifications
$\overrightarrow{QS} \parallel \overrightarrow{TV}$	GIVLI
$\angle TUW \cong \angle QRU$	COVYLST
$m\angle PRQ + m\angle QRU = 180^{\circ}$	LV
$m\angle PRQ + m\angle TUW = 180^{\circ}$	SUDST.

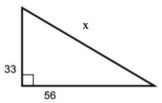


5. Given: $\angle SRU \cong \angle RUT$ Prove: $\overrightarrow{QS} \parallel \overrightarrow{TV}$

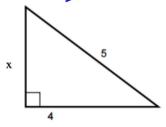
Statements	Justifications
$\angle SRU \cong \angle RUT$	1 6) (VXI)
$\angle PRQ \cong \angle SRU$	Vert
$\angle RUT \cong \angle PRQ$	Trans
$\overrightarrow{QS} \parallel \overrightarrow{TV}$	COYYEST LS



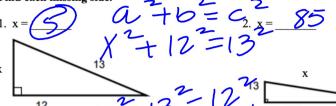
Statements	Justifications]	1	1	
$a \parallel b$	CILLY		1/2	9) 10	
$m \angle 9 + m \angle 11 = 180^{\circ}$, LY		3/4	11/12	————> a
211=21	Alternate Interior Angles		5/6	13/14	\ \
$m \angle 9 + m \angle 14 = 180^{\circ}$	5,405		7/8	15/16	——> b
V 9 9/-14	L ARE DE GUY	יע	c	d	
	/ 5:			-	
W (2, 01)					
UUPP	•				

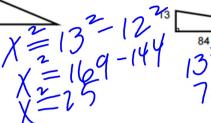


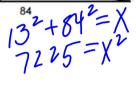
4.
$$x = \frac{2}{3}$$

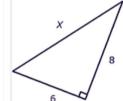


Find each missing side.









6.
$$x = 27$$



10. A ladder is leaning against a building, as shown to the right. How far is the base of the ladder from the building? Leave your answer in simplest radical form.

Distance = 4/26

 $30^{2} - 22^{2} = X$ 410 = X $X = \sqrt{4100}$ 3000 $X = \sqrt{4100}$ 3000 2200

H. Geometry Topic 14: The Coordinate Plane
Objective 1: Finding Distance on the Coordinate Plane Recall that a point is a line is a series of Don't. In coordinate geometry, you describe a point by an line is a series of Carlot (x, y) called the line of the point.
Review of the Coordinate Plane
Quadrant 3 Quadrant II 2 I I I I I I I I I I I I I I I I I

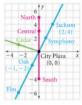
The Distance Formula

The distance d between two points $A(X_b, V)$ and $B(X_b, Y_b)$ is

 $\lambda = \sqrt{(\chi_1 - \chi_2)^2 + (\chi_1 - \chi_2)^2}$

*The distance formula is a derivation of the Pythagorean Theorem.

Example 2: Each morning Juanita takes the "Blue Line" subway from Oak Station to Jackson Station. As the map below shows, Oak Station is 1 mile west and 2 miles south of City Plaza. Jackson Station is 2 miles east and 4 miles north of City Plaza.



A) Find the distance Juanita travels between Oak Station and Jackson Station

B) Find the distance between Elm Station and Symphony Station. (-3, -4) (1, 2) (-3, -4)

Example 1: Find the distance between each pair of points to the nearest tenth.

A) T(5, 2) and R(4, -1)

$$X_1 Y_1 X_2 Y_2$$

B) A(1, -3) and B(-4, 4)
 $X_1 Y_1 X_2 Y_2$
 $A = \sqrt{74}$
 $A = \sqrt{81+9}$
 $A = \sqrt{90} \approx 9.5$

C) In either of the above examples, does it matter which point is first? Explain.

C) Maple Station is located 6 miles west and 2 miles north of City Plaza. Find the distance between Cedar Station and Maple Station.

$$M(-6,2)$$
 V10
 $C(-3,1)$ $d = 3.2 mi$

Objective 2: The Midpoint of a Segment To find the coordinate of the of a segment on a number line, find the point. The midpoint of \overline{AB} is $\overline{AM} = \overline{MB}$ We can extend this process to find the coordinates of the midpoint of a segment that is in the coordinate plane. $\overline{AM} = \overline{MB}$

The Midpoint Formula	
The coordinates of the midpoint M of \overline{AB} with end	points $A(X_1, Y)$ and $B(X_2, Y)$ are:
N / I	(X1+X2 Y1+Y2)
 	111112 71+12
l lab	

S(1)

Study the diagram of \overline{TS} with endpoints T(4, 3) and S(8, 5). Can you find the midpoint of \overline{TS} using the idea from the previous page?

$$M_{\overline{13}} = (6, 4)$$

$$(4+8, 3+5)$$

$$(\frac{4+8}{2}, \frac{3+5}{2})$$

Example 3: Find the midpoint of each segment given the endpoints.

A) Given that Q(3, 5) and S(7, -9), find the midpoint of \overline{QS} .

$$M_{\overline{QS}} = (5, -2)$$

B) Find the coordinates of the midpoint of \overline{XY} with endpoints X(2, -5) and Y(6, 13).

$$M_{\overline{XY}} = (4,4)$$

The next example shows how to find one of the endpoints if given an endpoint and the midpoint. Example 4:

A) The midpoint of \overline{AB} is M(3, 4). One of the endpoints is A(-3, -2). Find the coordinates of B. Method 1: use the midpoint formula $3 = -3 + \times$ $6 = -3 + \times$ $-3 + \times$ -

Hwk #36 - Distance & Midpoint Practice Worksheet

B) The midpoint of \overline{XY} has coordinates (4, -6). Whas coordinates (2, -3). Find the coordinates of Y. Use whichever method from above you prefer.

(2,-3) (4,-6) (6,-9)