1. Solve this equation. Justify the steps.

$$4x + 7 - x + 3 = 34$$

 $\frac{3 \times 10^{5}}{4 \times 10^{5}} = \frac{1}{3} \times 10^{5} = \frac{$

3. If EF = 2x - 5, FG = 2x - 6, and EG = 29, find the values of x, EF, and FG. The drawing is not to scale.

6X - 13 = 29 6X = 42 6X = 7

2. Solve this equation. Justify the steps.

$$5-4(2x-3)=-15$$

 $\frac{\text{Steps}}{5-4(2x-3)} = -15 \quad \text{Given}$ $5-8x+12 = -15 \quad \text{Distr. prop}$ $-8x+17 = -15 \quad \text{Simplify}$ $-8x=-32 \quad \text{Substr. pro}$ $x=4 \quad \text{division prop}$

4.

x	w(x)	t(x)	
1	-1	-3	
2	3	-1	Z
3	4	1	
4	3	3	
5	-1	5	

The table above shows some values of the functions w and t. For which value of x is w(x) + t(x) = x ?

D) 4

- - D) 10
- 5. If $x = \frac{2}{3}y$ and y = 18, what is the value of 2x 3?

 (A) 21 $x = \frac{2}{3}(18) = 12$ 2(12)

4. Use a property of equality to justify each of the following statements.

If QR = ST, then QR + BC = ST + BC.

- 6. If $\sqrt{x} + \sqrt{9} = \sqrt{64}$, what is the value of x?
 - A) $\sqrt{5}$

((X)=	=	\$ 2	
X	=	25	

If $m\angle 1 = m\angle 2$ and $m\angle 2 = m\angle 3$, then $m \angle 1 = m \angle 3$.

If $2 \cdot m \angle 1 = m \angle 2$,

then $m \angle 1 = \frac{m \angle 2}{2}$.

If JK + AB = RQ + AB, thenJK = RQ.

e	
---	--

Deductive reasoning, logic, and proof
Student Activity Sheet 3; Exploring "Creating proofs"

Page 1 of 6

1. Write a definition for a postulate

2. Points A, Z, and B lie on \overline{AB} . If AZ = 2 centimeters and **ZB** = 3 centimeters, what is AB? Explain how you found your answer.

From the diagram, AB + BC = AC. If BC = DE, then AB + DE = AC.

If $m \angle 1 = \frac{1}{2} \cdot m \angle 2$, then $2 \cdot m \angle 1 = m \angle 2$.

3. Now consider a similar question involving angles. Given the angles shown in the diagram, if $m\angle AXB = 15^{\circ}$ and $m\angle BXD = 20^{\circ}$, what is $m\angle AXD$? On what assumptions are you basing your answer?

4. Use the given answer choices to complete the statements.

ZB	m ∠BXD	m∠ AXD	AB	m∠ AXB	AZ
0.000			0.00000		

Segment Addition Postulate: If Z is between A and B, then

_				
	A	z	В	

5. Here is an application of the Angle Addition Postulate. In the diagram, ∠AXD is a straight angle because A, X, and D are collinear. B is in the interior of ∠AXD. The questions below will lead you through a deductive argument about a special relationship between the angles in this diagram.

- a. Given that $\angle \mathsf{AXD}$ is a straight angle, what do you know about its measure? How do you know?
- b. Because you know that ${\bf B}$ is in the interior of $\angle {\sf AXD}$, what does the Angle Addition Postulate tell you about the angles?

_____ + ____ = _____

- c. Now you know two things that are equal to $m\angle AXD$. How can you use the Transitive Property of Equality to combine these statements?
- d. What do you call angles whose measures sum to $180^{\circ}\!?$ Which two angles have this property?

6. Write a definition for a theorem.

 ∠AXB and ∠BXD are special angles called a linear pair. A linear pair is made up of two adjacent angles that form a straight angle. Using what you learned in questions 4 and 5, write a theorem about linear pairs.

9. Using the answer choices provided, fill in the correct reasons for each of the statements in this two-column proof.

8. Using the answer choices provided, fill in the correct reasons for each of the statements in this flow-chart proof.

Substitution Property	Division Property		Angle Addition Property		Multiplication Property	
Subtraction Property	Segment Addition Postulate		Addition Property		Given	
Given: LI = AN Prove: LA = IN	L	A	ı		N	
LI = AN		LA +	AI = LI		AI + IN = AN	_
		LA + AI	= AI + IN			
		LA	= IN			

10. The results of the proofs you completed in questions 8 and 9 are often stated as a theorem called the Common Segment Theorem. Fill in the blanks to complete the theorem.

Given the segment shown, the following statements are true:

If AC = BD, then . If AB = CD, then