Refer to the diagram at the right for Exercises 1-15.

- **1.** Name \overrightarrow{AB} in another way.
- **2.** Give two other names for plane Q.
- **3.** Why is \overline{EBD} not an acceptable name for plane Q?

Are the following sets of points coplanar?

- **8.** *E*, *B*, and *F*
- **10.** \overrightarrow{AC} and \overrightarrow{ED}
- **12.** *F*, *A*, *B*, and *C*
- **14.** plane Q and EC

- **9.** \overrightarrow{DB} and \overrightarrow{FC}
- **11.** \overrightarrow{AE} and \overrightarrow{DC}
- **13.** *F*, *A*, *B*, and *D*
- **15.** \overrightarrow{FB} and \overrightarrow{BD}

Are the following sets of points collinear?

4. \overrightarrow{AB} and C

5. *B* and *F*

6. \overrightarrow{EB} and A

7. F and plane Q

Find the intersection of the following lines and planes in the figure at the right.

- **16.** \overrightarrow{GK} and \overrightarrow{LG}
- **17.** planes GLM and LPN
- **18.** planes *GHPN* and *KJP*
- **19.** planes *HJN* and *GKL*
- **20.** \overrightarrow{KP} and plane \overrightarrow{KJN}
- **21.** \overrightarrow{KM} and plane GHL

· //

11. **REINFORCE** In the circle below, the distance **CN** equals 3x - 10 and the distance **CK** equals $x^2 - 20$. Find the distance **CP**.

$$CN = CK = CP$$

 $x^2 - 20 = 3x - 10$
 $x^2 - 3x - 10 = 0$

$$x^2 - 3x - 10 = 0$$

$$(x-5)(x+2)=0$$

$$x = 5$$
 and $x = -2$

However, x = -2 results in CN = -16, and distance cannot be negative. So, $x \neq -2$ and x = 5.

$$CP = CN = 3(5) - 10 = 5$$