Theorem 12-9

Inscribed Angle Theorem

The measure of an inscribed angle is half the measure of its intercepted arc.

$$m \angle B = \frac{1}{2} m\widehat{AC}$$

3. *m*∠*R*

4. \widehat{mMP}

Inscribed Angles

Find each measure.

1. $m\widehat{XY}$

2. *m*∠*N*

Find each measure.

1. $m\widehat{AC}$

Corollaries Corollaries to the Inscribed Angle Theorem

- 1. Two inscribed angles that intercept the same arc are congruent.
- 2. An angle inscribed in a semicircle is a right angle.
- 3. The opposite angles of a quadrilateral inscribed in a circle are supplementary.

ALGEBRA Find each measure.

Find the measure of the arc or angle indicated.

6.
$$m \angle A$$
 580
 $(6x-3)^{\circ}$ $(6x-3)^{\circ}$ $(9-2-5y+8)$
 $-3 = (7x-11)$ $y = 10$
7. $m \angle C$ $(45^{\circ})^{(6y-2)^{\circ}}$ $(5y+8)^{\circ}$

Classwork:

• Practice 12.3 Worksheet

Homework: IXLs U.8 & U.9