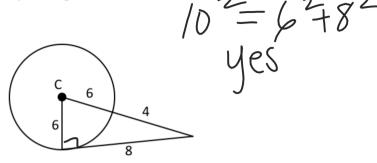
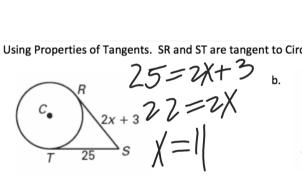
1. Verify a Tangent to a Circle.

a.



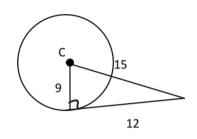
2. Using Properties of Tangents. SR and ST are tangent to Circle C. Find the value of

a.





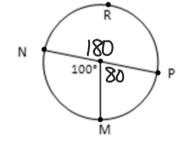
b.



15=97122

3. Finding measures of each arc of circle R. (NP is a diameter)

- 100°



4	Finding the	measures	of Arcs

b. \widehat{GEF}

Theorem 12-9 describes the relationship between an inscribed angle and its intercepted arc.

Theorem 12-9: Inscribed Angle Theorem.

of its intercepted arc.

Geometry

12-3: Inscribed Angles

Objective 1: I can find the measure of an inscribed angle.

Hands-On Activity: Exploring Inscribed Angles

- 1. a. Patterns In ⊙X, use a protractor to measure ∠AXB and each numbered angle. Determine $\widehat{\textit{mAB}}$. Record your results and look for patterns. Compare your results with others.
- b. Write a conjecture about the relationship between $m \angle 1$ and \widehat{mAB} . c. Write a conjecture about the measures of $\angle 1$, $\angle 2$, and $\angle 3$.
- 2. a. Patterns Use a protractor to measure the numbered angles in OY. Record your results and look for patterns. Compare your results. b. Write a conjecture about an angle whose vertex is on a circle and

There are three different ways that an angle can be inscribed inside of a circle.

I.

I: The center is on a side of the angle. II.

II: The center is inside the angle. III.

III: The center is outside the angle.

Regardless of where the center of the circle is located, you will still use Theorem 12-9 to find the measure of inscribed angles.

Example 1: Use Theorem 12-9 to find the measure of inscribed angles.

 \overline{A}) Find the values of a and b.

$$\frac{1}{5}b^{0} = \frac{1}{2}(\widehat{PT} + \widehat{TS})$$

$$\frac{1}{2}(120 + 30)$$

$$= 75^{\circ}$$

B) Use the diagram above and find $m\angle PQR$ if mRS = 60.

$$1/2(120+30+60) = 105^{\circ}$$

These corollaries below will help you find the measures of angles in circles.

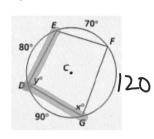
Corollaries to the Inscribed Angle Theorem:

(1) Two inscribed angles that intercept the same arc are

(2) An angle inscribed in a semicircle is a 90° rt2

= 18D°

C) Find the values of x and y.



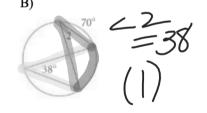
$$X = \frac{1}{2}(DE + EF)$$

$$= \frac{1}{2}(80 + 70) = 75^{\circ}$$

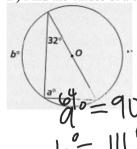
$$Y = \frac{1}{2}(70 + 120) = 95^{\circ}$$

<u>Example 2:</u> Use the above corollaries to find the measure of the numbered angles.

$$A)$$
 $\angle 1 = 90$



D) Find the values of a and b.



The measure of an angle formed by a Lum line and a Church The measure of the Interverse

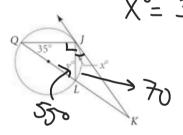
arc.

Objective 2: I can find angles formed by a tangent line and a chord.

In the diagram, B and C are fixed points, and point A moves along the circle. From the Inscribed Angle Theorem, you know that as A moves, $m \angle A$ remains the same and is $\frac{1}{2}m\widehat{BC}$. As the last diagram suggests, this is also true when A and C coincide.

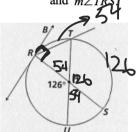
Example 3:

A) In the diagram below, \overline{KJ} is tangent to the circle at J. Find the values of x and y. X = 35



B) How could we find $m \angle QJK$?

Example 4: \overline{RS} and \overline{TU} are diameters of $\odot A$. \overline{RB} is tangent to $\odot A$ at point R. Find and $m \angle TRSI$



$$\angle TPS = 63^{\circ}$$
 $\angle BPT = 27$

Hwk #30 -

Sec. 12-3

Pages 681-682

Problems 1-3, 5-14, 15-17, 21

IXL #16 - U.8 & U.9 due Friday at 4pm!