Find the values of x and y. Leave your answers in simplest radical form.

Determine whether each set of numbers will form an acute, obtuse, or right triangle.

7. $5\sqrt{7},10,11$ $(5\sqrt{2})+10^{28.30,40},12$ $(5\sqrt{2})+10^{28.30,40},13$ $(5\sqrt{2})+10^{28.30,40},13$ $(5\sqrt{2})+10^{28.30,40},13$

Geometry

8-3: The Tangent Ratio

Objective: I can use tangent ratios in right triangles to find missing sides.

Example 1: (a) Write the tangent ratios for

 $\angle T$ and $\angle U$.

21=34 24=43 QC 1: (a) Write the tangent ratios for $\angle K$ and $\angle J$.

 $J = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) =$

(b) How is $\tan T$ related to $\tan W$? (10)

(b) How is $\tan K$ related to $\tan J$?

We can use the tangent ratio to measure distances that would be difficult to measure directly or to find missing legs in right triangles.

Example 2: Your goal in Bryce Cannon National Park is the distant cliff. About how far away is the cliff if $m \angle 1 = 86^{\circ}$?

Objective 2: I can use tangent ratios in right triangles to find missing angles. If you know the leg lengths of a right triangle, you can find the ratio for each acute angle. If you know the tangent ratio for any angle, you can use the to find that missing angle.
Step 1: Set up the tangent ratio for an acute angle in the right triangle.
Step 2: Use the inverse tangent key on the calculator to find the angle. Step 3: Find the other acute angle by 5 Ubt. 1

B) Find $m \angle R$ to the nearest degree. Then find $m \angle T$. $-1 (47/41) = 49^{\circ}$ $\angle P = \pm \alpha N (47/41) = 49^{\circ}$ $\angle T = \pm \alpha N (41/47)$

Classwork: Practice 8-3 Worksheet

Hwk #15 -

Sec 8-3

Pages 434-435

Problems 1, 2, 5, 8-12, 16

IXL #9 - Q.1 & Q.4 due Friday at 4pm!