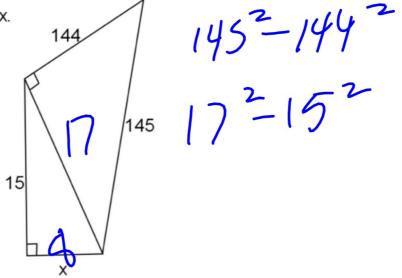
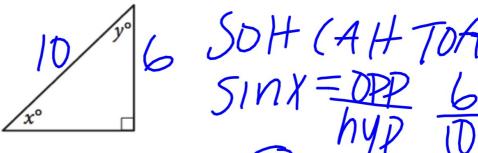

Find the missing side in each triangle. For non-integer answers, leave them in simplest radical


3. Does each set of lengths form a right triangle?


a.
$$16,30,34$$
 $34 = 30^{2} + 16^{2}$
 $61 = 59^{2} + 11^{2}$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 $11576 = 1156$
 1157

4. Is this a Pythagorean Triple?

14, 48, 50
$$50^2 = 48^2 + 14^2$$

 $2500 = 2500$ yes.

5. Find the value of x.

In the triangle above, the sine of angle x is 0.6.

What is the cosine of angle y?

The function f is defined by the equation above.

Which of the following is the graph of y = -f(x) in

the xy-plane?

$$\xi(X) = 2^{n} - 1$$

$$\xi(X) = -2^{0} - 1$$

$$\xi(X) = -2^{0} - 1$$

$$= -1 - 1 = -2$$

\boldsymbol{C}	eom		
UI	COIL	IEL	۲v

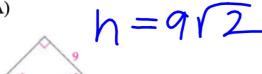
8-2: Special Right Triangles

Objective 1: I can find side lengths of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle.

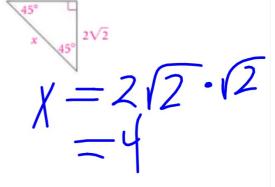
In an isosceles right triangle toth acute angles are _____. Another name for an isosceles right triangle is a _____ because of the measures of the angles. The theorem we're going to look at today shows the relationship among the 3 sides of this triangle.

Theorem 8-5: $45^{\circ} - 45^{\circ} - 90^{\circ}$ Triangle Theorem

In a 45°-45°-90° triangle, both legs are and the length of the hypotenuse is times the length of a leg.



hyp= 12. leg


Finding the hypotenuse of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle.

Example 1: Finding the length of each variable.

A)

B)

Finding the leg of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle.

Example 2: Find each variable.

A)

$$6 = \sqrt{2} \cdot X$$

$$X = \frac{6}{2} \cdot \frac{12}{12} = \frac{6\sqrt{2}}{2}$$

B) Find the length of a leg of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle with a hypotenuse of length 10.

$$10 = \sqrt{2} \cdot \chi$$

$$\chi = \frac{10}{\sqrt{2}} \cdot \sqrt{\frac{2}{2}} = \frac{10\sqrt{2}}{2}$$

$$= 5\sqrt{2}$$

<u>Example 3:</u> A high school softball diamond is a square. The distance from base to base is 60 ft. To the nearest foot, how far does a catcher throw the ball from home plate to second base?

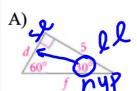
$$d = 60.\sqrt{2}$$

= 85 ft

QC 3: A square garden has sides 100 ft long. You want to build a brick path along a diagonal of the square. How long will the path be? Round your answer to the nearest foot.

$$d = 100\sqrt{2}$$

= 141&

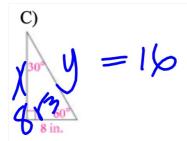

Objective 2: I can find side lengths of a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle

Another special type of right triangle is a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle. Today we will look at the relationship among the 3 sides of this triangle.

Theorem 8-6: 30°-60°-90° Triangle Theorem

In a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, the length of the hypotenuse is twice the length of the shorter leg. The length of the longer leg is $\sqrt{3}$ times the length of the shorter leg.

2s/310 s√3 $hyp = a \cdot short \cdot eg$ $ll = \sqrt{3} \cdot short$ leg



$$5 = \sqrt{3} \cdot d$$

$$d = 5 = \frac{5}{3} \cdot \frac{2}{10}$$

$$d = \frac{5}{3} \cdot \frac{2}{3}$$

$$d = \frac{10}{3} \cdot \frac{2}{3}$$

D)

$$\chi = 13$$
 $\chi = 13$
 $\chi = 13$

Hwk #14 -

Sec 8-2,

Pages 428-429,

Problems 2-5, 8, 11-13, 18, 22

IXL #9 - Q.1 & Q.4 due Friday by 4pm!