

- 1. Find the length of RS. 248
- 3. Find the length of TS.

5. Find the measure of \angle CWG $\frac{1}{\sqrt{1000}}$

Geometry

5-5: Inequalities in Triangles

In this section, we will learn several theorems about the side lengths and angles of triangles and how they are "arranged".

Ex 1: Using the triangle below, list the angles in order from least to greatest.

In $\triangle RGY$, RG = 14, GY = 12 and RY = 20.

ZR, ZY, ZC 14/ 12

Theorem 5-11: If two angles of a triangle are not congruent, then

If MLA > MLB
thun B() AC

Ex 2: Which choice shows the sides of ΔTUV in order from shortest to longest?

[B]
$$\overline{UT}$$
, \overline{UV} , \overline{TV}

[C]
$$\overline{UV}$$
, \overline{UT} , \overline{TV}

[D]
$$\overline{TV}, \overline{UT}, \overline{UV}$$

Ex 3: List the sides of ΔXYZ in order from shortest to longest. Explain your reasoning.

YZ,XY,XZ

In order to be able to form a triangle, there is a special relationship among the sides. The next theorem tells us when a triangle can exist if we know the lengths of its sides.

The sum of the lengths of any two sides of a triangle is the triling side of the trili

XY+YZ>XZ

X2+XY>YZ X2 +Y2>X"

Ex 4: Can a triangle have sides with the	given lengths?	Explain.
A. 2 cm, 7 cm, 9 cm	В.	4 yd, 6 y

2+> \$9

B. 4 yd, 6 yd, 9 yd 6+4>9 6+9>4 9+4765

Ex 5: A triangle has sides of lengths 3 in. and 12 in. Describe the lengths possible for the third

X+3>13 X+12>3 Side X>9 X>9 X>9 X>9 X>13>X X>13>X X>13 X>13 X>14 X>15 X>15

HW #29 -

Sec. 5-5

Pages: 293-294

Problems: 4, 8, 10, 13, 16, 17, 25, 26, 37

IXL #17 - M.4 & M.5 due Friday at 4pm!

(LAST IXLs OF THE SEMESTER