

Characteristics of Special Quadrilaterals

Parallelogram: both pairs of opposite sides are parallel

Rhombus: a Parallelogram with $4 \cong sides$

Rectangle: a Parallelogram with 4 right angles

Square: a Parallelogram with $4 \cong$ sides and 4 right angles

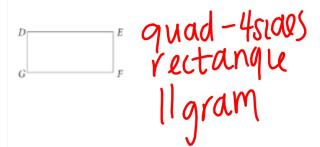
Kite: a Quadrilateral with two pairs of adjacent sides that are congruent and no opposite sides congruent.

Trapezoid: a Quadrilateral with exactly one pair of parallel sides (bases)

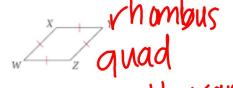
Isosceles Trapezoid: a Trapezoid whose nonparallel sides are congruent (legs)

What is the best name for Quadrilateral ABCD?				
A(15, -6) B(24, 21)		C(-3, 30) D(-12, 3) -9		
	y Slope	Distance $d = \sqrt{(x-x)^2 + (y-y)^2}$		
АВ	3	$d = \sqrt{810} \sqrt{(24-15)^2}$		
ВС	-27=3	$d = \sqrt{910}$ $81 + 729$		
CD	+3	d= \(810		
DA	1/3	0= 1810 Trap		

What is the best name for Quadrilateral EFGH?					
E(-24, 8) F(8, 32) G		G(36, 28)	H(-28, -20)		
	Slope		Distance		
EF	34	d₹(8+24)2+(32-8)2 [600 V 1496 MAY		
FG	-1/7	d=	V(36-8)2+(28-32)2		
GH	-29-36	-40 5/4 d=1	(-28-36) VILOD		
HE	ect h		V800		

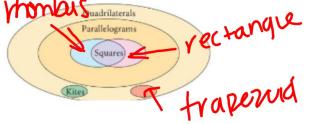

H. Geometry

6-1: Classifying Quadrilaterals


Objective: Classifying special quadrilaterals

Use the graphic organizer that we filled out to answer the questions below.

Example 1: Judging by appearance, classify DEFG in as many ways as possible.


QC 1: a) Judging by appearance, classify WXYZ in as many ways as possible.

b) Which name gives the most information about WXYZ? Explain.

rhombus

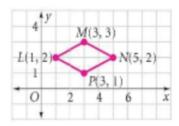
Example 2: Add the labels *Rectangles, Rhombuses*, and *Trapezoids* to the Venn diagram in the appropriate places.

Recall from algebra that to find the slope of a line we can do:

(1) slope =
$$\frac{rise}{run}$$

or

(2) slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
*Parallel lines have $\frac{y_2 - y_1}{x_1}$

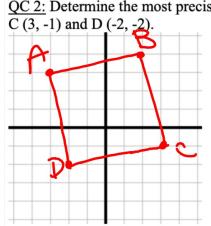

- *Perpendicular lines (lines that meet at right angles) have

opp. rec. slopes.

Example 2: Classifying by coordinate methods

Determine the most precise name for quadrilateral LMNP.

Step 1: Find the 5000 of each side using the



Step 2: Find the
$$\frac{M151}{MN}$$
 of each side using the $\frac{MN}{MN} = \sqrt{5}$ $\frac{MN}{MN} = \sqrt{5}$ $\frac{MN}{MN} = \sqrt{5}$ $\frac{MN}{MN} = \sqrt{5}$

QC 2: Determine the most precise name for quadrilateral ABCD with vertices A (-3, 3), B (2, 4),

Square

We can also use the definitions of special quadrilaterals to find the lengths of sides. If you know that sides are congruent, then

Example 3: Find the values of the variables for the kite.

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

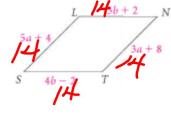
$$\begin{array}{c}
AB = AB \\
AB = AB$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB$$

$$\begin{array}{c}
AB = AB \\
AB = AB$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$


$$\begin{array}{c}
AB = AB \\
AB = AB$$

$$\begin{array}{c}
AB = AB \\
AB = AB
\end{array}$$

$$\begin{array}{c}
AB = AB \\
AB = AB$$

$$\begin{array}{c}
AB =$$

QC 3: Find the values of the variables for the rhombus. Then find the lengths of the sides.

$$5a+4 = 3a+8$$
 $2a = 4$
 $a = 4$
 $a = 4$
 $3b+2=4b^{-}$
 $a = b^{-}$
 $a = b^{-}$
 $a = b^{-}$

Is each statement True or False?

- 1. All Rhombuses are Squares. False
- 2. Some Rectangles are Parallelograms.

TIML

3. Every Square is a Rectangle.

HW #1 - Semester I Reflection

HW #2 -

Sect. 6-1

Pages: 309-310

Problems: 7-12, 20, 24, 36-41

(both are due Thursday)