1. Which pair(s) of triangles are congruent? Why? Write a congruence statement.

2. Are the triangles below congruent by HL theorem? If so, write a congruence statement.

a)

Demp= Domn What additional information would you need to prove the triangles congruent by HL theorem?

3.

4.

5.

6.

Hwk #25 Answers:

- 2. Both triangles are right triangles with congruent hypotenuses & congruent pair of legs. Therefore, by the HL theorem, $\Delta LMP \cong \Delta OMN$.
- 3. Right angles: Angle T and Angle Q. 4. Congruent pair of legs.

Statements	Reasons
$AD \cong CB$	Given
$\angle D \& \angle B$ are right angles	Given
$AC \cong AC$	Reflexive Property
$\Delta ADC \cong \Delta CBA$	HL Thm.

7. a. Given

b. Given

c. $\Delta JLM \& \Delta LJK$ are right triangles

d. Given

e. $LJ \cong Lj$

f. HL Thm.

10.
$$x = 3$$
; $y = 2$

10.
$$x = 3$$
; $y = 2$ 11. $x = -1$; $y = 3$

12. We need to know if the side with length 7 is to be a leg and a hypotenuse.

13.	
$\overline{RS}\simeq \overline{TU}$	Given
$\overline{RS}\bot\overline{ST}$	
$\overline{TU}\bot\overline{UV}$	
T is the midpoint of \overline{RV}	
ΔRST and ΔTUV are both right triangles	Definition of right triangles.
$\overline{RT}\simeq \overline{TV}$	Definition of midpoint
$\Delta RST \simeq \Delta TUV$	HL (Hypotenuse-Leg) Theorem

Algebra In Exercises 10 and 11, for what values of *x* and *y* are the triangles congruent by HL?

Write a short paragraph to explain why the two triangles are congruent.

12. Critical Thinking While working for a landscape architect, you are told to lay out a flower bed in the shape of a right triangle with sides of 3 yd and 7 yd. Explain what else you need to know in order to make the flower bed.

What additional information do you need to prove the triangles congruent by HL?

3. $\triangle BLT$ and $\triangle RKQ$

Proof 13. Given: $\overline{RS}\cong \overline{TU}, \overline{RS}\perp \overline{ST},$ $\overline{TU}\perp \overline{UV}, \underline{T}$ is the midpoint of \overline{RV} .

Prove: $\triangle RST \cong \triangle TUV$

<u>roof</u> 6. Given: $\overline{AD} \cong \overline{CB}$, ∠D and ∠B are right angles.

Prove: $\triangle ADC \cong \triangle CBA$

7. Developing Proof Complete the two-column proof.

Given: $\overline{JL} \perp \overline{LM}, \, \overline{LJ} \perp \overline{JK}, \, \overline{MJ} \cong \overline{KL}$

Statements

Prove: $\triangle JLM \cong \triangle LJK$

1.	$\overline{JL} \perp \overline{LM}$ and $\overline{LJ} \perp \overline{JK}$	a
2.	$\angle JLM$ and $\angle LJK$ are right angles.	b3
c	2	3 D

4. $\overline{MJ}\cong \overline{KL}$

6. $\triangle JLM \cong \triangle LJK$

Rea	so	ns

- 3. Definition of a right triangle
- 5. Reflexive Property of Congruence **f.** ?

1. Complete the proof below.

Given: $\overline{AD} \perp \overline{BC}$ and $\overline{BA} \cong \overline{CA}$

Prove: $\triangle ABD \cong \triangle ACD$

Statements	Justifications
$\overline{AD} \perp \overline{BC}$	SITEN
ZADB & ZHDC = 90°	Det at 1 buector
∠'A'B ≥ LADC	All right angles are congruent
$\overline{BA} \cong \overline{CA}$	Given
AD S'AD	Reflexive Property
DASD = DAC	TUM.

2. Complete the proof below.

Given: \overline{DE} is the perpendicular bisector of \overline{FC} ;

 $\overline{DF} \cong \overline{DC}$

Prove: $\triangle DEF \cong \triangle DEC$

Statements	Justifications
\overline{DE} is the perpendicular bisector of \overline{FC}	niven
FE & Ct	Definition of bisector /
ZDFF4 ZDEC = 90°	Definition of perpendicular
DEL TO DEC	All right angles are equal
DI Z DC	Given
$\Delta DEF \cong \Delta DEC$	H / MM.

Classwork: Practice 4.6 Worksheet

IXL #14 - K.5 & K.11 due tomorrow at 4pm!