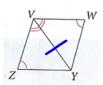
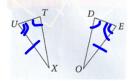
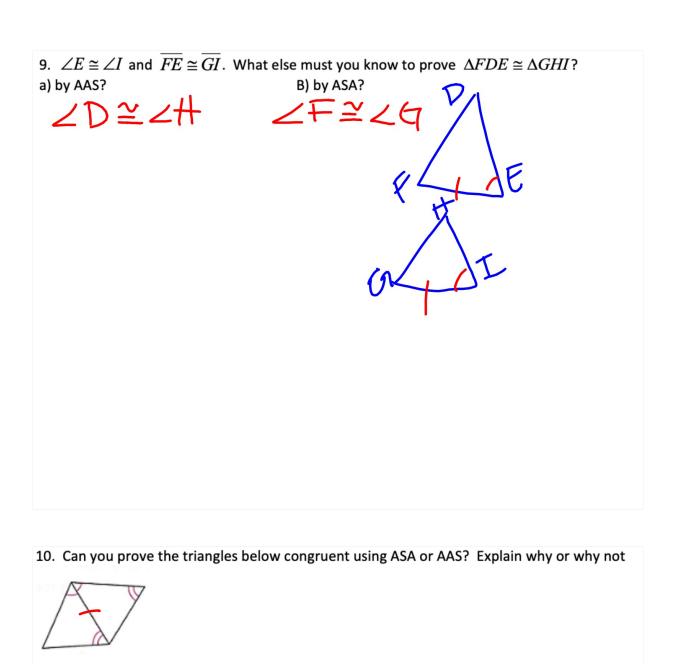

Answer each question. Drawing a triangle may be helpful.


- 3. Which side is included between $\angle R$ and $\angle S$ in $\triangle RST$?
- 4. Which angles include \overline{NO} in ΔNOM ?

Write a congruence statement for each pair of triangles.	Name the postulate or theorem that justifies your statement
It may help to mark the "freebies".	





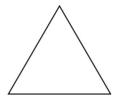
8. For the triangles given, $\angle D\cong \angle T$, $\angle E\cong \angle U$, and $EO\cong UX$. Which of the following statements is true?

- A) $\Delta TUX \cong \Delta DOE$ by ASA
- B) $\Delta UTX \cong \Delta DEO$ by AAS
- C) $\Delta TXU \cong \Delta ODE$ by ASA
- D) $\Delta TUX \cong \Delta DEO$ by AAS \checkmark

Geometry	7
Ocometi y	1

4-5: Isosceles and Equilateral Triangles

Objective 1: The Isosceles Triangle Theorems


Recall that an isosceles triangle has ___

We are going to look today at some theorems about these two types of triangles.

Theorem	4-3:	Isosceles	Triangle	Theorem
---------	------	------------------	-----------------	----------------

If two sides of a triangle are congruent, then sides are =.

Angles opposite finish sides are =.

LA = LB

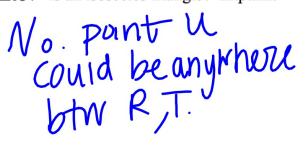
Theorem 4-4: Converse of Isosceles Triangle Theorem

If two angles of a triangle are congruent, then SIORS opposite the 25 are =.

Theorem 4-5: The bise	ctor of the verte	ex angle of an iso	sceles triangle
Theorem 4-5: The bise	the. I b	orsector	tothe

base CD_AB

Example 1: Explain why each statement below is true using the given figure.


By thm 4-3 ZWVS =ZS

A) $\angle WVS \cong \angle S$


the using the given figure.

By Hnm 4-Y $ZR \cong ZWVV$ $ZR \cong ZWVV$ Z

QC 1: Can you conclude that ΔRUV is an isosceles triangle? Explain.

Example 2:

A) Find the value of y. $y = 27^{\circ}$

B) Suppose $\angle L = 43^{\circ}$. Now find the value of y. $= 47^{\circ}$.

A corollary is a statement that follows immediately from a theorem. We have 2 corollaries involving the isosceles triangle theorem.

Corollary 1: If a triangle is equilateral, then
Corollary 1: If a triangle is equilateral, then THE AIS EQUI MIGHT
1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
∠ X = ∠Y = ∠Z
λ λ Σ

Corollary 2: If a triangle is equiangular, then +NQ ΔIS XY = Y2 = X2

Hwk #24 - due Wednesday

Sec. 4-5

Pages: 230 - 232

Problems: 1, 4, 5, 7, 8, 10-12, 20, 21, 24, 32

Use the handout I gave

IXL #14 - K.5 & K.11 due Friday at 4pm!