

- 1. Find the length of RS.
- 2. Find the length of TQ
- 3. Find the length of TS. 3(124) + 44 = 418

5. Find the measure of ∠ CWG

Geometry

5-3: Concurrent Lines, Medians and Altitudes

Objective 1: Properties of Bisectors

When three or more lines intersect in one point, they are called <u>CONCUVY ENCY</u>.

The point at which the lines intersect is the <u>Point of Concuvy Ency</u>.

For any triangle, there are 4 different sets of lines that are concurrent. Theorems 5-6 and 5-7 tell you about two of them.

Theorem 5-6:
The perpendicular bisectors of the sides of a triangle are concurrent at a paint equidistant from the Vertices.
The bisectors of the angles of a triangle are CONCURTOR AT Q VI
The discelors of the angles of a disangle are
Theorem 5-7: The bisectors of the angles of a triangle are CONCURENT AT A Pt equidistant from the sides.

This figure below shows $\triangle QRS$ with the perpendicular bisectors of its sides concurrent at $\underline{\underline{C}}$. The point of concurrency of the perpendicular bisectors if a triangle is called the $\underline{\underline{C}}$.

Points Q, R, and S are equalist from C, the circumcenter. The circle is the triangle.

QC 1:

a. Find the center of the circle that you can circumscribe about the triangle with vertices at (0, 0), (-4,3)

The figure below shows $\triangle UTV$ with the bisectors of its angles concurrent at T. The point of concurrency of the angle bisectors of a triangle is called the T

Points X, Y, and Z are QUMID. from I, the incenter. The circle is WISCHIDEO in the triangle.

2 EXAMPLE Real-World Connection

Pools The Jacksons want to install the largest possible circular pool in their triangular backyard. Where would the largest possible pool be located?

QC 2: 2 a. The towns of Adamsville, Brooksville, and Cartersville want to build a library that is equidistant from the three towns. Trace the diagram and show where they should build the library. b. What theorem did you use to find the location? • Cartersville

Objective 2: Medians and Altitudes

Theorem 5-8: The medians of a triangle are concurrent (at a point that is 2/3 of the distance from each vertex to the

*The point C is called the Central where all the medians meet. This point can also be called the Central OF GYAY. OF because it is the point where a triangular shape would balance if you placed it on a point.

Example 3: Finding lengths of medians

In $\triangle ABC$, D is the centroid and DE = 6. Find BE.

QC 3: Find BD. Check that BD + DE = BE.

An of a triangle is the segment from a vertex to the			
Acute Triangle Altitude is	Right Triangle Altitude is	Obtuse Triangle Altitude is	
Example 4: Identifying medians and altitudes a. Is \overline{ST} a median altitude or neither? Explain.			

Theorem 5-9:

The lines that contain the altitudes of a triangle are concurrent.

HW #27 - due tomorrow

Sec. 5-3

Pages: 275 - 276

Problems: 1, 2, 8, 9, 11-16, 19-22

IXL #16 - M.2 & M.3 due Friday at 4pm!