- 1. Given \overrightarrow{AQ} is the \bot bisector of \overrightarrow{GH} find the following.
- a. GH $|4\rangle$ b. AG $|2\rangle$ c. AH $|2\rangle$

2. Find the value of w.

PC = PG 5W+7 = 3W+3D W = 14

HW #27 Answers:

- 2. 15
- 3. 18
- 4. 8
- 6. x = 12; JK = 17; JM = 17
- 10.9

- 18. **12**
- 19. **4**
- 20. 4

- 21. 16
- 22. **5**

10. Find the value of y.

Use the figure at the right for Exercises 1-4.

- **1.** From the information given in the figure, how is \overline{AC} related to \overline{BD} ?
- **2.** Find *AB*. **3.** Find *BC*. **4.** Find *ED*
- **5.** On a piece of paper, mark a point *H* for home and a point *S* for school. Describe the set of points equidistant from *H* and *S*

6. Algebra Find x, JK, and JM.

 \overrightarrow{CD} is the perpendicular bisector of both \overrightarrow{XY} and \overrightarrow{ST} , and CY = 16. Find each length.

- **18.** *CT*
- 19. TY
- **20.** *SX*
 - SX **21.** CX
- 22. *MT*24. *DY*
- **23.** *ST*
- **26.** What kind of triangles are $\triangle SCT$ and $\triangle XCY$? Explain.

Median of a triangle:

The segment that conects a vertex with the midpoint of the opposite side.

These too are concurrent.

Altitude of a triangle: (height)

The perpendicular segment from a vertex to a line containing the opposite side.

Draw the altitude from W.

 \overline{PQ} is the perpendicular bisector of $\overline{MN}.~Q$ is the point of intersection

MN=a4.

of \overline{PQ} and \overline{MN} . If PQ = 9 and PM = 15 find the length of MN

1. Use the triangle to identify three pairs of parallel sides.

- (1)
- (2)
- (3)

2. Find the value of x.

x = 64

3. Find the value of x.

x = ____

$$8 = 3X - 4$$

4. Points B, D, and F are midpoints of the sides of $\triangle ACE$. EC = 30 and DF = 23. Find AC.

-

5. \overrightarrow{DF} bisects $\angle EDG$. Find the value of x.

6. Q is equidistant from the sides of ∠TSR. Find the value of x.

 $\frac{3}{1} \times \frac{30}{1}$

7. Which statement can you conclude is true from the diagram if \overrightarrow{AB} is the perpendicular bisector of \overrightarrow{IK} ? (Circle one.)

 $A \cdot A \cdot J = B \cdot J$

(B)IJ = JK

C. $\angle IAJ$ is a right angle

D. A is the midpoint of \overline{IK} .

8. Q is equidistant from the sides of $\angle TSR$. Find m $\angle RST$. (Circle one.)

2X+5=5X-25 X=10

- A. 25
- B. 10
- A. 25

B. 10

C. 2

D. 3

9. What is the name of the segment inside the large triangle below?

- A. perpendicular bisector
- B. angle bisector
- C. midsegment
- D. parallel line

10. What is the name of \overline{CF} in the figure below?

- A. perpendicular bisector B. angle bisector
- C. midsegment
- D. parallel line

11. What is the name of \overrightarrow{CD} in the figure below?

- A. perpendicular bisector B. angle bisector
- C. midsegment
- D. parallel line

CW/HW: Practice 5.2 Worksheet
IXL #16 - M.2 & M.3 due Friday at 4pm!