

Geometry

4-2: Triangle Congruence by SSS and SAS

Objective: To prove two triangles congruent using the SSS and SAS Postulates

In section 4-1 you learned that if two triangles have three pairs of congruent corresponding angles and three pairs of congruent corresponding sides, then the triangles are congruent.

If you know this:

$$\angle A \cong \angle X$$
 $\overline{AB} \cong \overline{XY}$
 $\angle B \cong \angle Y$ $\overline{AC} \cong \overline{XZ}$
 $\angle C \cong \angle Z$ $\overline{BC} \cong \overline{YZ}$

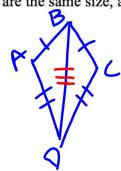
Then you know this:

 $\triangle ABC \cong \triangle XYZ$

However, you do not need to know that all ____ corresponding parts are ____ in order to conclude that two triangles are ____ . We have 4 'shortcuts' that we will learn in sections 4-2 and 4-3 that will help us conclude that two triangles are congruent.

Postulate 4-1: Side-Side-Side Postulate (SSS)

If three sides of one triangle are congruent to


are =

The two d's

AGHF= APOR

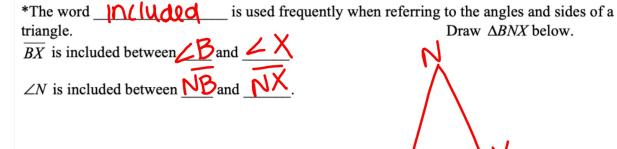
Example 1: The bridge girders are the same size, as marked. Explain why $\triangle ABD \cong \triangle CBD$.

\mathbf{C}	C	1
_		-

Given: $\overline{HF} \simeq \overline{HJ}, \overline{FG} \simeq \overline{JK},$

H is the midpoint of \overline{GK} .

Prove: $\triangle FGH \cong \triangle JKH$ **?**


by SSS 2 these ∆s are ≅

Postulate 4-2: Side-Angle-Side Postulate (SAS)

are 2.

ABCA = AFDE

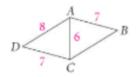
C B D F

Example 2: $\overline{RS} \cong \overline{TK}$. What other information do you need to prove $\Delta RSK \cong \Delta TKS$ by SAS?

R R T

PS=KT GIVEN

FS=KS PERI:


YOUNGED ZPSK=ZTKS

YOUNGED ZPSK=ZTKS

HO PROVE DRSK=ATKS

My SAS.

QC 2: What other information do you need to prove $\triangle ABC \cong \triangle CDA$ by SAS?

 $\overline{DC} = \overline{AB}$ Given $\overline{AC} \cong \overline{AC}$ Feel, $\overline{ADAC} \cong \overline{ABAC}$ to prove $\overline{ASON} \cong \overline{BSON}$ SAS.

Example 3: From the information given, can you prove the two triangles congruent?

A) $\Delta RED \cong \Delta CAT$

Not enough into to prove this.

B)
$$\triangle AEB \cong \triangle DBC$$

$$\angle E = \angle DBC$$

HW #21 - due tomorrow

Sect. 4-2

Pages: 208-210

Problems: 1, 2, 5-9, 20-25, 28-30

IXL #11 - G.2/G.3 & J.1 due tomorrow at 4pm!