1.
$$x = 5$$
$$y = 3$$

2.
$$x = 6$$

$$a = 22$$

$$b = 92$$

$$4. c = 22$$

$$d = 136$$

$$e = 44$$

4.
$$c = V^{\nu}$$

$$d = \sqrt{36}$$

6.
$$x = 56$$

H. Geometry	3.5 - The Polygon Angle-Sum Theorem	Date:
Objective 1: Classify		7
A DOUGON i The sides intersect or	s a plane figure with at least ally at their, and no adjacent sides	sides that are segments.
Examples of polygon	•	12
A E	$S \longrightarrow C$	Y V

To	a polygon Clockwise or	, start at any	and list the direction.

Ex 1: Naming Polygons

A. Name the polygon. Then identify its sides, vertices and angles.

Name: DH KMGB
Name: DH KMGB
Sides: DH, HK KM, MG
Angles: ZD ZK
ZH ZM
ZG ZB

B. Three polygons are pictured below. Name each polygon, its sides and its angles.

You can classify a polygon by the _______ it has. Let's make a table below that shows the names of some of the common polygons.

# of Sides	Name
3	triangle
4	aundrivatevo
5	'Bentagn
6	MIXINGON
8	octagin
9	nivain
10	deración
12	dodecagus
n	N-aun
	J

Polygons can also be classified as or CONCAVE.

A polygon has no diagonal with points outside the polygon.

*IN THIS BOOK, A POLYGON IS

UNLESS OTHERWISE

STATED!!!*

Example 2: Real-World Connection

The tile work in the photo below is a combination of different polygons that form a pleasing pattern. Classify the polygon outlined in red by using the table above. Then classify the polygon as convex or concave.

Name using number of sides:

Convex or concave:

(Onvex

QC2: Classify each polygon by it	ts sides. Identify each as conve	ex or concave.
A.	B.	C.
hexagon (onvex	octagn mac	The 12-pointed star at the center of the tile work pictured above. H-900 (OO(a)&

Objective 2: Polygon Angle Sums
Activity: The Sum of Polygon Angle Measures
You can use triangles and the triangle sum theorem to find the sum of the measures of the angles of a polygon. Record your data in the table below.

# of Sides	Number of triangles formed	Sum of the interior angle measures
4		
5		
6		
7		
8		
	5 6 7	5 6 7

Theorem	3_1	4. I	Polygon	Angle-Sum	Theorem
I Heor em	3-1	7. I	ULYZUH	Aligie-Sulli	I Heorem

The sum of the measures of the angles of an n-gon is

Example 3: Finding a polygon angle sum

A. Find the sum of the measures of a 15-gon.

B. Find the sum of the measures of a 13-gon.

n=> hexagon.

(15-2).180=2370

C. The sum of the measures of a given polygon is 720°. How many sides does the polygon have?

Example 4: Using the polygon angle-sum theorem.

A. Find $m \angle Y$ in pentagon MRTVY below.

B. Hexagon ABCDEF has all congruent angles. Find the measure of each angle.

120

You can draw an ______ at any vertex of a polygon. The figures below show that the sum of the measures of the exterior angles, one at each ______, is _____.

80 + 150 + 130 = 360

115 + 75 + 99 + 71 = 360

86 + 59 + 98 + 41 + 76 = 360

Theorem 3-15: Polygon Exterior Angle-Sum Theorem
The sum of the measures of the exterior angles of a polygon,
The sum of the measures of the exterior angles of a polygon, One at lund 15 360.
For the pentagon at the right:
21+22+23+24+25=360
21+20 +23121TAJ-300
4\
\5
0- 'INIOVAL 5314
An Ray 10 th all sides Ray 2010 has all sides Ray 2010 .
THE ANALYSIA STATE OF THE STATE

Example 5: The game board below has the shape of a regular hexagon. It is packaged in a rectangular box outlined next to it. The box uses four right triangles made of foam in its four corners. Find $m \angle 1$ in each foam triangle.

QC 5:

A. Find $m \angle 1$ above by using the Polygon Exterior Angle Sum Theorem.

B. Find $m \angle 2$. Is $\angle 2$ an exterior angle? Explain.

Hwk #18 - due tomorrow

Sect. 3-5

Pages: 161-162

Problems: 1-4, 8, 9, 13, 14, 21, 22, 24, 34, 43

IXL #9 - D.7 & F.1 due tomorrow at 4pm!