For #1 and #2, use the diagram to the right.

1. Given: m | n Prove: $\angle 6 \cong \angle 3$

Statements	Reasons
1) M [[h	1) Given
2) ∠2 ≅ ∠6	2) COTTESP. LIS =
3) ∠2 ≅ ∠3	3) Vert. 215 =
4) ∠6 ≅ ∠3	4) SUDST.

2. Given: m | n **Prove:** $m \angle 3 + m \angle 8 = 180^{\circ}$

Statement	Reason
1) m n	1) GIVEN
2) <i>m</i> ∠3 = <i>m</i> ∠6	2) alt int < 15 =
3) M26+M28=180	3) Definition of Linear Pair
4) $m \angle 3 + m \angle 8 = 180^{\circ}$	4) SUBSt.

3. Solve for x and y.
$$x = 20$$

$$4y = 12$$
 $4y = 12$
 $4y = 12$
 $4y = 3$

Geometry

3-4: Parallel Lines and the Triangle Angle-Sum Theorem

Objective 1: To classify triangles and find the measure of their angles.

Theorem 3-12: Triangle Angle-Sum Theorem	
--	--

The sum of the measures of the angles of a triangle is MLA +MLB+MLC=180 Example 1: Applying the Triangle Angle –Sum Theorem

A) Find the values of x and y.

To find the value of x, use

$$65+39+X=180$$

 $X=76$

 $F \xrightarrow{65^{\circ} x^{\circ} y^{\circ} z^{\circ}} H$

To find the value of y,

$$76 + y = 180$$

 $y = 104$

B) Find the value of z two different ways using the Triangle Angle-Sum Theorem.

In Chapter 1, you classified an an by its	gle by its Mlasure. Yo	ou can also classify a triangle
By Sides:		
equiateral	Isosceles	Scalene

Exampl	le 2:	Classifying	a	Triang	le
LAump	LC 2.	Classifying	u	Tiluing	

A: Classify each triangle by its sides and its angles.

1sosaus acuto

B: Draw and mark a triangle to fit each description. If no triangle can be drawn, write not possible and explain why.

a.) acute scalene

b.) isosceles right

c.) obtuse equiangular

Objective 2: To use exterior angles of triangles An of a polygon is an angle formed by a side and an extension of an adjacent side. For each exterior angle of a triangle, the two nonadjacent interior angles are its	
Remote interior angles	

Theorem 3-13: Triangle Exterior Angle Theorem
The measure of each exterior angle of a triangle equals

Mull=Mullatingle Exterior Angle Theorem
The measure of each exterior angle of a triangle equals

Mullatingle Exterior Angle Theorem
The Sum of Pamole
Interior angle of a triangle equals

Mullatingle Exterior Angle Theorem
The measure of each exterior angle of a triangle equals

Mullatingle Exterior Angle Theorem
The measure of each exterior angle of a triangle equals

Mullatingle Exterior Angle Theorem
The measure of each exterior angle of a triangle equals

Mullatingle Exterior Angle Theorem
The measure of each exterior angle of a triangle equals

Mullatingle Exterior Angle Theorem
The measure of each exterior angle of a triangle equals

Mullatingle Exterior Angle Theorem
The measure of each exterior angle of a triangle equals

Mullatingle Exterior Angle Exterior Angle Theorem
The measure of each exterior angle of a triangle equals

Mullatingle Exterior Angle Exter

Example 3: Using the Exterior Angle Theorem to find each missing angle measure A. B.

$$m1=40+30$$

D. Explain how you can find the measure of $\angle 1$ in Ex C without using the Exterior Angle Theorem.

End the 3rd measure of Δ subtresult from 180 bc. measures are supply

E. Two angles of a triangle measure 45. Find the measure of an exterior angle at each vertex. (Hint: draw a picture)

Example 4: The lounge chair has different settings that change the angles formed by its parts. Suppose $m \angle 2 = 32^{\circ}$ and $m \angle 3 = 81^{\circ}$. Find $m \angle 1$, the angle formed by the back and the arm rest.

$$32 + 81$$
 $m = 113^{\circ}$

Hwk #17 -

Sect. 3-4

Pages: 150-151

Problems: 4-6, 16-20, 25, 26, 31, 32

IXL #9 - D.7 and F.1 due Friday at 4pm!