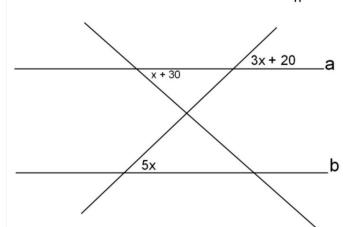
1. Find the value for x that makes a || b



3X + 20 = 5X 20 = 2XX = 10

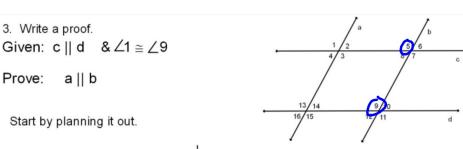
Given: a || b and c || d
 Prove: ∠13 & ∠8 are supplementary

Start by planning it out		
Statement	Reason	
1. a b and c d	1. Given	

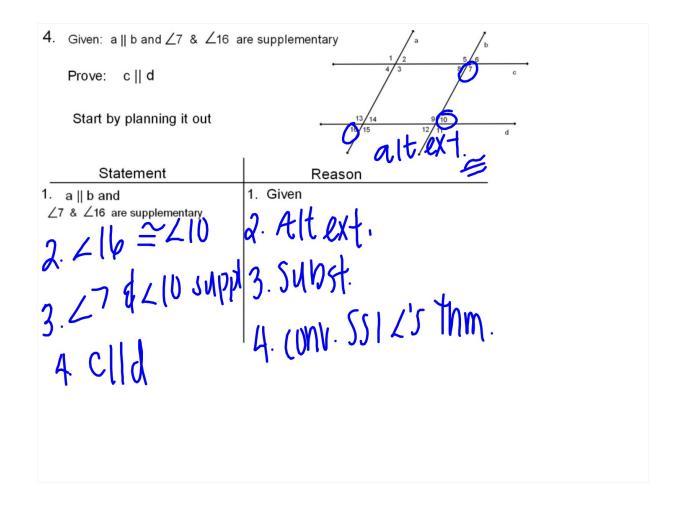
2. ZBÉZ4 2. SSIZIS are suppl.

3. 24=28 3. Corresp <'s

1. 213 & 28 4. Subst.



Statement	Reason	
1. c d &∠1 ≅ ∠9	1. Given	
1. c d & ∠1 ≅ ∠9 2. ∠9 & ∠6 are (ony.	2. (Orresp	
3. 21 225	3 Subst	- Julah 0
4. allb	4. Conv. Correspi	POSTUINA



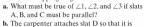
Hwk #16 Answers -

1. a. $\angle 1 \cong \angle 2 \cong \angle 3$; Corresponding Angles Post. b. Yes, Slat D is perpendicular to slat A. Slats A, B, and C are parallel, so by Theorem 3-11, slat D is also perpendicular to B and C.

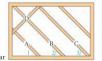
3.	$l \mid\mid k \text{ and } m \mid\mid k$	Given	
	$\angle 2 \simeq \angle 1$	Corresponding Angles Postualate	
	$\angle 1 \simeq \angle 3$	Corresponding Angles Postulate	
	$\angle 2 \simeq \angle 3$	Transitive Property of Congruence	
	$l \parallel m$	Converse of Corresponding Angles Theorem	

- 6. The rungs are perpendicular to both sides. The rungs are perpendicular to one of the two parallel lines, so they are not perpendicular to both lines.
- 7. The rungs are parallel to each other because they are all perpendicular to one side. The sides are parallel because they are both perpendicular to one rung.
- 8. The sides are parallel because they are both perpendicular to one rung.
- 9. All of the rungs are parallel. All of the rungs are parallel to one rung, they are parallel to each other.
- 10. The rungs are parallel because they are perpendicular to one side.
- 14. First, $a \parallel c$. Conclusion, $a \parallel d$.
- 15. First, $a \parallel c$. Conclusion $a \perp d$.
- **16.** First, $a \perp c$. Conclusion, $a \perp d$.

1. A carpenter is building a trellis for vines to grow on. The completed trellis will have two sets of overlapping diagonal slats of wood.



perpendicular to slat A. Is slat D perpendicular to slats B and C? Justify your answer.



3. Developing Proof Copy and complete this paragraph proof of Theorem 3-9 for three coplanar lines.

If two lines are parallel to the same line, then they are parallel to each other.

Given: $\ell \parallel k$ and $m \parallel k$

Prove: $\ell \parallel m$

Proof: $\ell \parallel k$ means that $\angle 2 \cong \angle 1$ by the **a.** $\underline{?}$ Postulate. $m \parallel k$ means that **b.** $\underline{?} \cong \mathbf{c}$. $\underline{?}$ for the same reason. By the Transitive Property of Congruence, $\angle 2 \cong \angle 3$. By the **d.** $\underline{?}$ Postulate, $\ell \parallel m$.

Each of the following statements describes a ladder. What can you conclude about the rungs, one side, or both sides of each ladder? Explain.

- 4. The rungs are each perpendicular to one side.
- 5. The rungs are parallel and the top rung is perpendicular to one side.
- 6. The sides are parallel. The rungs are perpendicular to one side.
- 7. The rungs are perpendicular to one side. The other side is perpendicular to the top rung.
- 8. Each side is perpendicular to the top rung.
- 9. Each rung is parallel to the top rung.
- 10. The rungs are perpendicular to one side. The sides are not parallel.

a, b, c, and d are distinct lines in the same plane. Exercises 14-21 show different combinations of relationships between a and b, b and c, and c and d. For each combination of the three relationships, how are a and d related?

14. $a \parallel b, b \parallel c, c \parallel d$

15. $a \parallel b, b \parallel c, c \perp d$

16. $a \parallel b, b \perp c, c \parallel d$

17. $a \perp b, b \parallel c, c \parallel d$

Section 3.3 Cont.

Given: a || b and a || c What can you conclude?

Theorem 3-9

If two lines are parallel to the same line, then they are parallel to each other.

$$a \parallel b$$

allc and blc

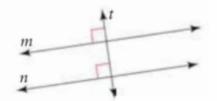
Given: a _ c and b _ c What can you conclude?

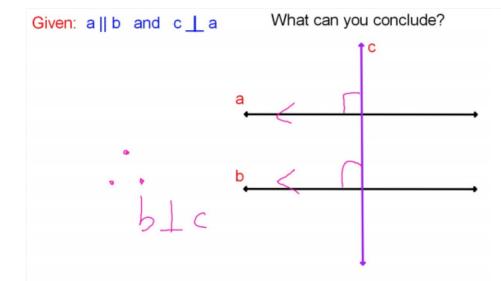
Theorem 3-10

In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

$$m \parallel n$$

m ⊥t and n⊥t

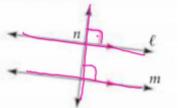




Theorem 3-11

In a plane, if a line is perpendicular to one of two parallel lines, then it is also perpendicular to the other.

 $n \perp m$



$$n \perp \ell$$
 and $n \parallel m$. $m \perp \ell$

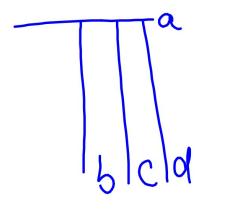
Each of the following statements describes a ladder. What can you conclude about the rungs, one side, or both sides of each ladder? Explain.

- 4. The rungs are each perpendicular to one side. Rungs are || to each other
- 5. The rungs are parallel and the top rung is perpendicular to one side.

All the other rungs are perpendicular to that side too.

1. What is the relationship between lines a and d?

 $a\perp b$, $b\parallel c$, $c\parallel d$



2. What is the relationship between lines a and d?

 $a \parallel b$, $b \perp c$, $c \perp d$

alld

3. What is the relationship between lines a and e?

 $a\perp b$, $b\parallel c$, $c\parallel d$, $d\perp e$

4. What is the relationship between lines a and e?

 $a \perp b$, $b \perp c$, $c \parallel d$, $d \perp e$

ale