Directions: Use the figure at right to complete each of the following statements.

- If ∠KJM≅ ∠MJL, then ______ is an angle bisector.
- 2. If \(\overline{IM}\) bisects \(\neq KJL, \text{ then m} \(\neq \overline{L} \) \(\overline{M} \) \(

JMbisects ∠KJL and m∠KJM = 46°, then m∠KJL = ______°.

5. Find the value of x and then find $m\angle WXZ$ and $m\angle ZXY$.

$$8x+4+3x+9=90$$
 $11x+13=90$
 $11x=70$
 $x=7$

6. Find the value of x if $m\angle ADC = 89^{\circ}$. Then find $m\angle ADB$ and $m\angle BDC$.

$$X+7+2X+19=89$$

 $3X+26=89$
 $3X=63$
 $X=10$

Objective 1: Finding the length of a segment in the x-y plane.

Sect. 1-8

So far we have seen how to use the segment addition postulate to find the length of several segments. But what if the segment is graphed in the x-y coordinate plane, like below?

DISTANCE FORMULA IN THE X-Y PLANE

To find the distance between two points and 1/2, use the formula below:

d=V(X2-X1)2+(X2-Y1)2

Fx	1.	Find	the	distance	ofi	the	segment	in	the	diagram	ahove
LA	1.	Tillu	uic	uistance	OI I	uic	segment	ш	uic	ulagraili	above.

- *First, write the COOL of the segment's LV15.
- * Label the points (x_1, y_1) and (x_2, y_2) if that helps

 $d = \sqrt{(+5^{-1})+(1-7)}$

*Now plug the numbers into the distance formula.

 $d = \sqrt{36 + 34}$

 $\underline{\text{Ex 2:}}$ Find the distance between the two points.

 $d = \sqrt{(-4 - 4)^{2} + (-4 - 2)^{2}}$

 $=\sqrt{3b}=6$

Ex 3: Find the distance between the two points.

Did we need to use the distance formula for this example? Why or why not?

Ex 4: Find the distance between the points (-1, 4) and (5, -3).

Ex 5: Find the distance between the points (-2, -8) and (7, 9).

Ex 6: Find the distance between the points (0, 1) and (-4, -2).

$$d = \sqrt{25} = 5$$

MIDPOINT FORMULA IN THE X-Y PLANE

To find the midpoint of a segment whose endpoints are (X_1, X_2, X_3) and (X_2, X_3) be the formula: (X_1, X_3) (X_1, X_3) (X_1, X_2) (X_1, X_3) (X_1, X_3) (X_1, X_2) (X_1, X_3) (X_1, X_3) (X

Ex 7: Find the midpoint of the segment whose endpoints are (6, 2) and (10, 0).

Ex 8: Find the midpoint of the segment whose endpoints are (-3, 4) and (5, 8).

$$M = (1, 4)$$

Ex 9: Find the endpoint of a segment whose midpoint is (1, 2) and has an endpoint at (-1, 1).

HW #7 - due tomorrow

Sect. 1-8

Page: 56

Problems: 1, 3, 4, 6, 9, 13, 14, 19, 20

IXL #2 - due Friday at 4pm

C.1 & C.5