Graph the function $Y_1 = Tanx$

Use this Window: $x:[0,4\pi]$ y: [-10, 10]

What is the period of the Tangent Function?

Period=
$$\frac{4\pi}{4} = \pi$$

Why does the graph of

$$y = Tan\theta$$
 look like this?

Using this definition of Tangent:

$$Tan\theta = \frac{y}{x}$$

When the numerator = 0 $Tan\theta = 0$ and there is an x-intercept

When the denominator = 0Tanθ is undefined and there is a Vertical Asymptote

The Parent Tangent Function: y = Tanx

Period of $Tan\theta = \pi$

this means every π units left or right from any point you get the same result.

What are the x-intercepts? IST X-INT=0

What are the Eq's of the Vertical Asymtpotes?

You can keep adding 17 70 find more VA.

Another definition of Tan:

$$Tan\theta = \frac{y}{x} = \frac{Sin\theta}{Cos\theta}$$

Leave Y_1 = Tanx. Graph Y_2 = Sinx.

How is the graph of Tanx related to the graph of Sinx?

Tanx is zero whenever Sinx is zero.

In other words, Tanx has x-intercepts where ever Sinx has x-intercepts.

Leave Y_1 = Tanx. Graph Y_2 = Cosx.

How is the graph of $Tan\theta$ related to the graph of $Cos\theta$?

Tane has a VA whenever $Cos\theta$ is zero (x-int).

y = aTanx a: If a<0 there is an x-axis reflection

A negative Tanx, just like negative slope, moves down and to the right.

a is also a Vertical Stretch or Shrink Factor but..... there are really no obvious points to define how "tall" the Parent Tangent function is. Therefore, we will only concern ourselves with whether a is positive or negative.

Since Tanx =
$$\frac{y}{x}$$

you can remember which way y=Tanx moves if you relate it to slope.

A positive Tanx moves up and to the right like a line with a positive slope.

y = Tan(bx)

Just like for Sin and Cos b represents a Horizontal Stretch or Shrink.

For Sin and Cos b was related to the period in the following ways:

Period = $2\pi/b$ and $b = 2\pi/period$

There is a similar relationship with Tangent:

b: The period of Tanbx =
$$\frac{\pi}{b}$$

$$b = \frac{\pi}{\text{period}}$$

The Tangent function is graphed in the window 0 to 2π .

1. What is the period?

$$\frac{2\pi}{5} = \frac{2\pi}{5}$$

2. What is the equation of this Tangent Function?

Cycles move down & to the right: NEG Tan

$$y = -Tan \frac{5x}{2}$$

The Tangent function is graphed in the window $\underline{0}$ to $\underline{2\pi}$.

1. What is the period?

$$\frac{2\pi}{3} = \frac{2\pi}{3}$$

2. What is the equation of this Tangent Function?

$$b = \frac{\pi}{\frac{3\pi}{3}} = \pi \cdot \frac{3}{3\pi}$$

$$b = \frac{3}{3}$$

Cycles move up 2 to the right: POS Tan

$$y = Tan \frac{3x}{2}$$

The Tangent function is graphed in the window 0 to 2π .

1. What is the period?

$$\frac{2\pi}{\frac{7}{2}} = 2\pi \cdot \frac{2}{5} = \frac{4\pi}{5}$$

2. What is the equation of this Tangent Function?

$$b = \frac{\gamma_{\pi}}{\frac{y_{\pi}}{5}} = \pi.5$$

$$b = \frac{5}{4}$$

cycles move up & to the right: Pos Tan

$$y = Tan \frac{5x}{4}$$

The Tangent function is graphed in the window $\underline{0}$ to 5π .

1. What is the period?

$$\frac{5\pi}{3} = 5\pi \cdot 2 = \frac{10\pi}{7}$$

2. What is the equation of this Tangent Function?

$$b = \frac{\pi}{\sqrt{2\pi}} \cdot \pi \cdot \frac{\pi}{\sqrt{2\pi}}$$

$$b = \frac{\pi}{\sqrt{2\pi}}$$

Cycles more down & to the right: NEG Tan

$$y = -Tan \frac{7x}{10}$$

Write the equation of this Tangent Function

period =
$$\frac{10\pi}{6} = \frac{5\pi}{2}$$

$$b = \frac{7\pi}{5\pi} = \pi \cdot 2$$

$$b = \frac{3\pi}{5\pi}$$

cycles move up is, to the rights
Pos Tan

$$y = Tan \frac{2x}{5}$$