1. Is each pair of angles coterminal?

b)
$$\frac{17\pi}{12}$$
 and $\frac{77\pi}{12}$

$$\frac{77\pi}{12} - \frac{17\pi}{12}$$

$$= 5\pi$$

$$10$$

4. Find both a positive and negative coterminal angle for each.
$$\theta = 2176^{\circ} \text{ POS.} \qquad \text{NeG} \qquad \text{NeG} \qquad \text{NeG} \qquad \text{15}$$

$$15 \qquad 15 \qquad \text{15}$$

$$2536 \qquad -704^{\circ} \qquad \text{POS} \qquad \text{Neg} \qquad \text{Neg} \qquad \text{15}$$

$$16^{\circ} \qquad \frac{705}{15} \qquad -32\pi$$

A lot of things in the real-world are cyclic (Periodic).

- Tides
- Temperatures
- Amount of Sunlight
- position of a piston in an engine

Average Montly Temperature Detroit, Michigan

Make a scatter plot on the graphing calculator of this data.

L_1	L_2
Month	Average High Temp ${}^{\circ}F$
Jan → 1	31
$Feb \rightarrow 2$	35
$March \rightarrow 3$	44
April → 4	57
May → 5	69
June → 6	78
July → 7	83
Aug → 8	80
Sept → 9	73
Oct → 10	60
Nov → 11	48
Dec → 12	36

Average Montly Temperature Sydney, Australia

Make a scatter plot on the graphing calculator of this data.

L_1	L_2
Month	Average High Temp °F
Jan → 1	79.9
Feb → 2	79.7
March → 3	78
April → 4	73.6
May → 5	68
June → 6	63.7
$July \rightarrow 7$	62.4
$Aug \rightarrow 8$	65.1
Sept → 9	68.9
$Oct \rightarrow 10$	72.7
Nov o 11	75.7
Dec → 12	78.6

Find the EXACT value of each. Rationalize denominators and simplify fractions.

A tree trimmer is up in a tree and sees his truck with an angle of depression of 38°. If his truck is parked 100 feet from the tree, how high up in the tree is he? Round to the nearest tenth.

Find the exact value of each.

- b) $Sin \frac{95\pi}{6}$
- c) $\cos \frac{-59\pi}{4}$

Find all values of θ (0° $\leq \theta \leq 360^{\circ}$) that meet the following conditions.

4.
$$\sin\theta = \frac{-1}{2} \quad 2/0^{\circ}, \quad 330^{\circ} \frac{(\frac{1}{2} \cdot \sqrt{3})}{(\frac{3}{2} \cdot 2) \cdot 3\pi} \frac{(0.1)}{300^{\circ}} \frac{(\frac{1}{2} \cdot \sqrt{3})}{(\frac{3}{2} \cdot 2) \cdot 3\pi} \frac{(0.1)}{300^{\circ}} \frac{(\frac{1}{2} \cdot \sqrt{3})}{(\frac{3}{2} \cdot 2)} \frac{(0.1)}{300^{\circ}} \frac{(\frac{1}{2} \cdot \sqrt{3})}{(\frac{3}{2} \cdot 2)} \frac{(\frac{1}{2} \cdot \sqrt{3})}{300^{\circ}} \frac{(\frac{1}{2} \cdot \sqrt{3})}{(\frac{3}{2} \cdot 2)} \frac{(\frac{1}{2} \cdot \sqrt{3})}{300^{\circ}} \frac{(\frac{1}{2} \cdot \sqrt{3})}{(\frac{3}{2} \cdot 2)} \frac{(\frac{1}{2} \cdot 2)}{(\frac{3}{2} \cdot 2)} \frac{(\frac{1}{2} \cdot \sqrt{3})}{(\frac{3}{2} \cdot 2)} \frac{(\frac{1}{2} \cdot 2)}{(\frac{3} \cdot 2)}} \frac{(\frac{1}{2} \cdot 2)}{(\frac{3} \cdot 2)} \frac{(\frac{1}{2} \cdot 2)}{(\frac{3} \cdot 2)}} \frac{(\frac{1}{2} \cdot 2)}{(\frac{3} \cdot 2)} \frac{(\frac{1}{$$

