The Parent Function: y = Sinx

Period= 2π

Amplitude= 1

Eq of Midline: y = 0

y = asinbx

|a| = Amplitude

a<0 represents an x-axis reflection (upside down)

b: Period =
$$\frac{2\pi}{b}$$

Sketch one period of each Sine function. Label the coordinates of all minimums, maximums, and points on the midline.

1. $y = 9 \sin 7x$ A = 9

Opens up

Midline y=0

Period $\frac{1}{2\pi} = \frac{\pi}{14}$

2.
$$y = -5 \sin \frac{x}{8}$$

amp = $5 \frac{x}{8}$

Upside down

period = $\frac{2}{1/8}$

Midling $y = 0$
 $\frac{1}{16}$
 $\frac{1}{4}$
 $\frac{1}{4}$

3. $y = -15 \sin \frac{6x}{7}$ amp = 15

open down

midline y = 0period = 7π · π

Using y = asinbx

- 1. To find find the value of a on a given graph all you need to know is the amplitude.
- If the cycle in your graph starts on the midline 2. and goes up to a maximum a is Positive
- 3. If the cycle in your graph starts on the midline and goes down to a minimum a is Negative

Using
$$y = asinbx$$
 Period $= \frac{2\pi}{b}$

Solving for b you get:
$$b = \frac{2\pi}{Period}$$

Therefore, to find the value of b given a graph all you need to know is the period.

Find the Amplitude and Period then figure out the values of a and b. Write the equation of this graph in the form y = aSinbx

Find the Amplitude and Period then figure out the values of a and b. Write the equation of this graph in the form y = aSinbx

Find the Amplitude and Period then figure out the values of a and b. Write the equation of this graph in the form y = aSinbx

$$b = \frac{2\pi}{28\pi} \cdot \frac{9}{28\pi}$$

$$\frac{28\pi}{9} = \frac{9}{14}$$

$$5 = -4\sin(9x)$$

$$y = aSin(x-h) + k$$

a = Vertical Stretch or Shrink Factor: |a| = Amplitude if a<0 x-axis reflection

h = Horizontal Translation This is called: Phase Shift

k = Vertical Translation Midline: y = k

$$y = a(x-h)^2 + k$$

Vertex: (h,k)

$$y = a\sqrt{x-h} + k$$

Starting Point: (h,k)

$$y = a|x-h| + k$$

Vertex: (h,k)

$$y = aSin(x-h) + k$$

Starting Point: (h,k)

Describe the transformations represented in each equation:

7Sin(x -
$$\frac{\pi}{4}$$
) + 4

amp 7

Vertical Stretch

Vertical Stretch

Vertical Stretch

Upside down

3 * taller

midline $y = -6$

Shrink factor

y = -3Sin(5x) - 6

Upside down

3 * taller

Midline $y = -6$

Shrink factor

Strummer

5* Name of the stretch

April 5* Shrink factor

Strummer

5* Name of the stretch

The

$$y = aSin(bx) + k$$

a Vertical stretch/shrink = Amplitude

If a<0: Upside down (x-axis reflection)

- b Horizontal stretch or shrink Period = $2\pi/b$
- k Veritcal shift = Midline

Find the Amplitude, Period, and Midline of this Sine Function:

Equation: y = 3Sin(4x) + 2