Alg 2 Classwork

Special Right Triangles

Name:

In Mathematics there are two triangles referred to as Special Right Triangles:

$$30^{\circ} - 60^{\circ} - 90^{\circ}$$
 Triangle

The Long Leg is always across from the 60° The Short Leg is always across from the 30° This is an Isosceles Triangle so the two legs are equal

Relationships amongst sides:

Relationships amongst sides:

Short Leg =
$$\frac{\text{Hypotenuse}}{2}$$

Hypotenuse = $2 \cdot \text{Short Leg}$

Hypotenuse = Leg $\cdot \sqrt{2}$

Long Leg = Short Leg
$$\cdot \sqrt{3}$$

$$Leg = \frac{Hypotenuse}{\sqrt{2}}$$

Short Leg =
$$\frac{\text{Long Leg}}{\sqrt{3}}$$

Rationalize denominators when necessary

Example Problems:

Ex 1: Find the exact value of x and y

x is the Short Leg: $x = \frac{22}{2} = 11$

y is the long leg: $y = 11 \cdot \sqrt{3} = 11\sqrt{3}$

Ex 2: Find the exact value of x and y

x is a Leg: $x = \frac{7}{\sqrt{2}}$ Now rationalize: $\frac{7}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{7\sqrt{2}}{2}$

$$\frac{7}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{7\sqrt{2}}{2}$$

The two legs are equal which means y is also $\frac{7\sqrt{2}}{2}$

Do the problems on the back

Find the EXACT value of x and y. Reduce fractions. Rationalize denominators as necessary.

2.
$$x = y =$$

3.
$$x = y =$$

4.
$$x =$$

y =

5.
$$x = y =$$

$$y =$$

7. x =y =

