Y-Intercepts: Replace x with zero.

All that will remain are the two constants.

therefore, y-intercepts of rational functions are ratios of the constants.

A graph can have, at most, one y-intercept.

In general, the x-intercepts of a Rational Function are the:

Zeros of the numerator (as long as they don't match zeros of the denominator, otherwise, they are holes)

A graph can have multiple x-intercepts.

X-Intercepts: Replace y with zero.

This means you are setting the ratio equal to zero and solving for x.

The only way a ratio equals zero is if the NUMERATOR equals zero.

therefore, x-intercepts of rational functions are zeros of the numerator

find the x and y-intercepts of each function, if any.

1.
$$y = \frac{x^2 + 6x + 8}{2x^3 - 18x}$$
$$- \frac{(x + 4)(x + 2)}{2x(x^2 - 9)}$$
$$= \frac{(x + 4)(x + 2)}{2x(x + 3)(x - 3)}$$

$$2. \quad y = \frac{4x^2 + 12}{3x^2 - x - 24}$$

y-int:
$$y = \frac{12}{727} = -\frac{1}{2}$$

2x(x+3)(x-3) x-int: the numerater will never = zero, therefore

there are

NO X-INT

y-int: y = 8 NO Y-MT

Neither of these are

x-int:

of the denominator So they are not holes Find the x-intercepts, if any.

$$\frac{x^2 - 4}{x^2 - 7x - 18} = \frac{(x+2)(x-2)}{(x+2)(x-9)}$$

$$\frac{-9}{-7} + 2$$

$$(x-2 \text{ is a hole not an } x-\text{int})$$

Find all VA, HA, x-int, and y-int.

$$y = \frac{x^{2}+1}{x^{2}+x-6} = \frac{x+1}{(x+3)(x-2)}$$

$$y - in\tau = -6$$

You can now finish:

Hwk #6.

Practice Sheet: Horizontal Asymptotes and x & y-intercepts

Due tomorrow

$$y = \frac{x+1}{x^2+x-6}$$

HA: $y = 0$

$$VA: x = -3,2$$

$$x-int: x = -1$$

$$y-int: y = -1/6$$

A graph MUST pass through the axes at its intercepts but can't touch or cross the axes anywhere else.

Find all VA, HA, x-int, and y-int.

$$y = \frac{3x^{2} - 12}{x^{2} - x - 12} = \frac{3(x^{2} - 4)}{(x - 4)(x + 3)} = \frac{3(x + 2)(x - 2)}{(x - 4)(x + 3)}$$

HA:
$$y = \frac{3}{1} = 3$$

 $y = 107$: $y = \frac{-12}{-12} = 1$
VA: $x = 4, -3$

Sec 9-4

Rational Expressions:

The ratio of two polynomials.

Polynomials: Have whole number exponents and real coefficients.

A rational expression is in its simplest form when:

The denominator and numerator have no common factors.

This is NOT a Rational Function, why?

$$\frac{\sqrt{x^2 - 5x + 3}}{2x - 9}$$

The numerator isn't a polynomial!

A radical represents a fractional exponent.

Sec 9-4 Simplifying Rational Expressions

- Factor all numerators and denominators
- Cancel factors common to the numerator and denominator
- Restrictions are any values that make the denominator zero at any point (beginning to end)

