- 1. The number of cells of a certain bacteria doubles (increases by 100%) every 30 minutes. There are 500 cells at 2pm. Find the number of cells at each time.
- a. Noon the same day $\chi = 4000$ $y = 400(2)^{\frac{30}{30}}$
- b. 6:45am the same day $X = \frac{285}{30} = 9.5$ Y = 400(2) = 289,631
- c. 10:15pm the previous day $\chi = \frac{-2.25}{30} = -7.5$ y = 400(2) $y = \frac{1}{30}$
- 2. Every 40 minutes the amount of medicine in your body decreases 50% (called half life). If you took 400mg dose at 10:00am find the amount of medicine in your system at each time.
- a. 2:00pm the same day X = 4h is X = 4
- b. 4:30pm the same day $X = \frac{390}{40}$

a.
$$2005$$
 $y = 89000(1.11) = 1091657$

b. 1982
$$\chi = \frac{-13}{5} = -2.6 (67,850)$$

c. 2017
$$X = \frac{22}{5} = 4.4 \frac{140,868}{5}$$

Graphs of Exponential Functions

General Form of an Exponential Equation:

Graphs of
$$y = a \cdot b^x$$

a: the y-intercept. If a is negative graph is upside down (x-axis reflection)

b: Growth or Decay Factor

Growth Factor: The larger the value of b the faster the graph

increases. b>1

Decay Factor: The smaller the value of **b** the faster the graph decreases 0
b<1

 $1 \underline{D} y = 4(2)^x 2 \underline{C} y = 2(5)^x 3 \underline{B} y = 2(8)^x 4 \underline{A} y = 4(5)^x$

 $1 \ \underline{D} \ y = 6^x \ 2 \ \underline{B} \ y = 0.5^x \ 3 \ \underline{A} \ y = 0.8^x \ 4 \ \underline{C} \ y = 10^x$

Find the value of x in each equation: Round to the nearest hundredth when needed.

2.
$$64 = x^3$$

2.
$$64 = x^3$$
 4
3. $10^5 = x$ /DD/DD

4.
$$10^{x} = 200$$

Every math operation has it's inverse.

Inverse operations "undo" each other.

We solve equations by using inverses to get the variable by itself.

Given Operation	Inverse Operation
Addition	Subtraction
Division	Multiplication
Squaring	Square Root
Cube Root	Cubing

Find the equation of the inverse for this function:

$$y = \frac{4x^{3} - 7}{85} + 1$$

$$X = \sqrt{4y^{3} - 7} + 1$$

$$3 \sqrt{(X-1)^{2} + 7} = \sqrt{4y^{3} - 7} + 1$$

$$y = 10^x$$

To solve for x in an exponential equation: $y = 10^{x}$ we use the inverse operation called:

Logarithm

Another way to remember Logarithmic Form:

Exponential Form:

$$x = y^z$$

becomes

Lograrithmic Form:

$$z = Log_y x$$

Logarithmic Equation

$$log_b y = x$$

Range: Domain:
Any real x > 0
number

b: b>0, b**#**1

Rewrite each into logarithmic form.

1.
$$5^{x} = 40$$
 $109540 = X$

2.
$$6^2 = x$$
 $1096 = 3$

1.
$$5^{x} = 40$$
 $109540 = X$
2. $6^{2} = x$ $109_{6}X = 2$
3. $x^{2} = 20$ $109_{8}20 = 2$

Rewrite each into exponential form.

2.
$$LOG_3x = 12$$
 $3^{12} = X$

3.
$$LOG_x 15 = 30$$
 $\chi = 15$

Write in Logarithmic Form:

 $10^{x} = 125$

LOG₁₀125 → "LOG base 10 of 125" → LOG125

LOG₁₀ is called the Common Logarithm and is written without the 10.

The button on the calculator LOG is for Common Logarithms LOG₁₀

Evaluate each: (hint: think of each as an exponential)

1.
$$\log_4 1$$
 \bigcirc

3.
$$\log_7(7) \frac{\chi}{\chi} = 7$$

5.
$$\log_6(6^4)$$
 $6 = 4$

4.
$$\log_{25} 5$$
 25 = 5

Solve each equation. Round to the nearest tenth.

1.
$$10^{x} = 1500$$

$$|09|_{10}(1500) = 1$$

$$|33|_{2}$$

3.
$$4^{x} = 44$$
 $109_{4} + 4 = X$
 $X = 2.7$
 $109_{10} + 4$

2.
$$\frac{4(10)^{x}}{4} = \frac{570}{4}$$

 $10^{x} = 143.5$
 $\chi = 3.3$

4.
$$12^{x} = 3$$

 $109_{12}^{x} = 3$
 $109_{12}^{x} = 0.4$

What if your calculator only has LOG?

Property

Change of Base Formula

For any positive numbers, M, b, and c, with $b \ne 1$ and $c \ne 1$,

$$\log_b M = \frac{\log_c M}{\log_c b}$$

The value of a house has been decreasing 7.5% each year. The house was worth \$180,000 in 2001.

In how many years will the value fall to \$45,000? Round to the nearest hundredth.

$$\frac{45,000=180,000(0.925)^{\times}}{180,000} \times 0.25 = 0.925 \times 0.25 \times 0.2$$