If an exponential equation models a real situation:



1. The value of a house has been decreasing 3.7% each year. In 2005, the value was \$310,000. Find the value of the house in 2018 to the penny.

100 -3 7 -9

y=310,000(0.963)13 = \$ 189,890.58



a) 
$$\chi = 8$$
  $\chi = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,000 | .049,0 = 1,325,0 = 1,325,000 | .049,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0 = 1,325,0$ 

following years to the nearest whole number 
$$b = 1.02$$
 a)  $2018$   $y = 1,325,000$   $y = 1,325,000$ 

3. The number of cells of a certain organism doubles every 40 minutes. At 8:30 am on a given day there were 80,000 cells.

a) 3:20pm the same day 
$$y = 80,000 - 2$$
  
 $40 - 10.25 = 97,119,847$ 

minutes. At 8:30 am on a given day there were 80,000 cells. Find the number of cells at the given time rounded to the nearest whole number.

a) 3:20pm the same day 
$$V = 80,000(2)$$

b) 10:15pm the previous night  $V = 80,000(2)$ 
 $V = 80,000(2)$ 

4. The half-life of a radioactive material is 3 days. If there is 1,500,000 grams of this material on June 19, find the number of grams of this material remaining on July 8. Round to the nearest hundredth.

$$y=1,500,000(.5)^{-3}$$
  
= 18,607.35

State the percent change each exponential equation represents.

1. 
$$y = 450(0.704)^{x}$$
 2.  $y = 0.97(1.0502)^{x}$   
 $100 - 70.4 = 29.6\%$  5.  $0.2\%$ 

2. 
$$y = 95(2)^{x}$$
 $|007^{\circ}| |00|$ 

Does each represent growth or decay?

1. 
$$y = 0.003(1.04)^x$$

2. 
$$y = 44,000 \left(\frac{223}{232}\right)^{-x} \frac{232}{223}$$

You can now finish Hwk #2

Practice Sheet: Exponential Equations

## Graphs of Exponential Functions

# General Form of an Exponential Equation:



## Using the graphing calculator do the following:

Graph  $Y_1=1\cdot 2^x$ 

Use the following window:  $X_{min} = -5$   $X_{max} = 5$   $Y_{min} = -5$   $Y_{max} = 10$ 

#### Describe this graph

The graph increases from left to right.

The rate of increase speeds up as you move to the right.

What is the y-intercept? (0,1)



Leaving  $Y_1=1\cdot 2^x$  graph  $y=1\cdot b^x$  for two other values of b bigger than 2 in  $Y_2$  and  $Y_3$  .

- 1. Make a sketch of all three graphs labelling each graph with it's equation.
- 2. Describe what changing the value of b does to the graph.

### When b >1 the graph represents Exponential Growth.

in this case **b** is called the Growth Factor



What point do all 3 graphs have in common?

$$y-int = 1$$





As b gets larger the graph increases/grows faster ("steeper")

$$y = ab^x$$

What happens to each graph as you move farther to the



The graph flattens out and approaches the x-axis, but never actually reaches or crosses it.

The x-axis is called a Horizontal Asymptote.



Why will these graphs never reach or cross the x-axis as you move farther and farther to the left?

When x becomes bigger negative the reciprocal of the base becomes a smaller number but will never become zero or negative.

Leaving  $Y_1=1\cdot 2^x$  change a from 1 to two other positive values. Graph these equations in  $Y_2$  and  $Y_3$ .

- 1. Make a sketch of all three graphs labelling each graph with it's equation.
- 2. Describe what changing the value of a does to the graph.



What does changing the value of a in the equation do to the graph?

changing the value of a in the equation changes the y-intercept

a = the y-intercept

$$y = ab^x$$

 $y=ab^{x}$  What does a negative value of a do to the graph?



x-axis reflection Upside Down

Now, in  $Y_1$  graph the following:  $Y_1 = 0.5^x$ 



When 0<b > 1 the graph represents Exponential Decay.

**b** is called the Decay Factor



Leaving  $Y_1 = 0.5^x$  graph  $y = b^x$  for two other values of b between 0 and 1 in  $Y_2$  and  $Y_3$  .

- 1. Make a sketch of all three graphs labelling each graph with it's equation.
- 2. Describe what different values ofb, when 0<b<1, does to the graph.

As **b** gets smaller, but still positive, the graph decreases faster ("steeper")



Graphs of 
$$y = a \cdot b^x$$

- a: the y-intercept. If a is negative graph is upside down (x-axis reflection)
- b: Growth or Decay Factor

Growth Factor: The larger the value of b the faster the graph increases.
b>1

Decay Factor: The smaller the value of **b** the faster the graph decreases 0<br/>b<1

$$1 \underline{D} y = 4(2)^x \quad 2 \underline{C} y = 2(5)^x \quad 3 \underline{B} y = 2(8)^x \quad 4 \underline{A} y = 4(5)^x$$



 $1 \ \underline{D} \ y = 6^x \ 2 \ \underline{B} \ y = 0.5^x \ 3 \ \underline{A} \ y = 0.8^x \ 4 \ \underline{C} \ y = 10^x$ 

