Exponential Functions

Name ______ Period _____

YouTube Video Questions:

1) There are 6 exponential functions in this video. What are they?

2) For what value of the domain was each function evaluated in examples 1-4?

3) What are the two exponential functions that were graphed? What are their bases? What is the difference in the two bases?

Assignment - Hwk #15:

Ex 1: The function $y = 3^x$ is called an ______ function because the exponent is a

Now, let's look at how to graph the exponential function $y = 3^x$.

													`	Y 1	•										
х	$y = 3^x$	У	(x, y)											10 9											
-3	$y = 3^{(-3)} = \frac{1}{3^3} = \frac{1}{27}$													8 7 6											
-2														5 4 3											
-1							_							2										\exists	
0				+	-9	-8	-7	-6	-5	-4	-3	-2	-1	-1		2	3	4	5	6	7	8	9	10	X
1							7		7		7	7	\dashv	-2 -3								H		\exists	
2														-4 -5											
3														-6 -7											
			<u>'</u>	_										-9											

Definition 1: Since the *y* values increase as the *x* values increase in the example above, this is what we call exponential ______. (The graph goes up the hill from left to right)

Ex 2: Now, let's look at how to graph the exponential function $y = \left(\frac{1}{3}\right)^x$.

							(- ,					Υ	1											
х	$y = \left(\frac{1}{3}\right)^x$	У	(x, y)									\top	10 9 8 7									_		
-3						\perp		t				\downarrow	6	\dashv	\dashv					\dashv	\dashv	\downarrow	\exists	
-2						\mp	+	t	H			\mp	3	7	7					\dashv	\dashv	\mp	\exists	
-1						\dashv	Ŧ	F	H			7	2	7	\dashv					\dashv	\exists	7	7	
0					-9	-8	-7 -0	5 -5	5 -4	-3	-2		-1	1	2	3	4	5	6	7	8	9	10	X
1						\perp		\perp					-2 -3	\exists	\perp						\exists	\pm		
2						\perp	+	+					-4 -5 -6		\downarrow						\exists	\dashv		
3						\perp	+	+				\pm	-7 -8	+	\dashv	\dashv				\dashv	\dashv	\pm	\exists	
			1	4									.9	<u> </u>										

Definition 2: Since the *y* values decrease as the *x* values increase in the example above, this is what we call exponential ______. (The graph goes down the hill from left to right)

Tell whether the functions below show exponential GROWTH or DECAY.

3)
$$y = \left(\frac{1}{4}\right)^x$$

4)
$$y = 2^x$$

5)
$$y = 1^x$$

6)
$$y = 5^x$$

7)
$$y = \left(\frac{2}{3}\right)^x$$

8)
$$y = 9^x$$

$$9) \quad y = \left(\frac{1}{5}\right)^x$$

10)
$$y = 4^x$$

$$11) \quad y = \left(\frac{2}{7}\right)^x$$

$$12) \quad y = \left(\frac{5}{6}\right)^x$$

- a. Which function will have the steepest exponential growth?
- b. Which function will have the flattest exponential growth?
- c. Which function will have the steepest exponential decay?
- $\label{eq:decay:$