Solve each quadratic equation by factoring.

Remember to follow these steps:

- a. Rewrite equation so that is has this form: $ax^2 + bx + c = 0$
- b. Factor completely.
- c. Find the zeros of each factor.

3.
$$3x^{3} - 2x^{2} + 32 = 48x$$

 $3x^{3} - 2x^{2} - 48x + 32 = 0$
 $3x - 2$ $(3x - 2)(x^{2} - 16) = D$
 $x^{2} = 3x^{3} - 2x^{2}$
 $-16 = 48x = 32$ $(x^{\pm} + 4)$
 $-16 = 48x = 32$ $(x^{\pm} + 4)$

2.
$$-54x = -3x^2 - 243$$

$$-9 + 9 = 3(x-9) = 0$$

$$3(x^2 - 54x + 243 = 0)$$

$$3(x^2 - 18x + 81) = 0$$

$$x = 9$$

4.
$$42x^{2} + 24x = 0$$

$$(7x + 4) = 0$$

$$X = 0, -4$$

Standard Form of a Quadratic Equation:

$$0 = ax^2 + bx + c$$

Solutions to Quadratic Equations are the same as x-intercepts of the graph.

When y=0 you are finding x-intercepts!

Sec 10-5: Factoring to Solve Quadratic Equations

- 1. Make sure the Quadratic Equation is in Standard Form $0 = ax^2 + bx + c$
- 2. Factor the Quadratic
- 3. Find the zeros of each factor

Property

Zero-Product Property

For every real number a and b, if ab=0, then a=0 or b=0

Example: If (x+3)(x+2)=0, then x+3=0 or x+2=0

$$x + 3 = 0$$
 or $x + 2 = 0$
 $-3 - 3$ $x = -3$ $x = -2$

-3 and -2 are called:

- solutions to the equation
- Zeros of the factors
- Roots of the function
- They are also x-intercepts of the parabola

Solve each equation by factoring.

$$x^2 - 8 = 2x$$

Solve each equation by factoring.

$$7x^2 - 21x = 0$$

Solve each equation by factoring.

$$6x^2 + 5x - 21 = 0$$

Solve each equation by factoring.

$$4x^3 + 4x^2 = 120x$$

Solve each equation by factoring.

$$9w^2 - 49 = 0$$

Solve each equation by factoring.

Quiz Class Review

1. A company wants to maximize its profit. The following function models the company's profit as a function of the number of components it manufactures:

 $P(c) = -0.075c^2 + 240c + 27,500$

- a) Find the company's maximum profit. 19,500
- b) How many components should it manufacture to realize this maximum profit?

$$C = 1600$$

$$\frac{20}{2(-0.075)}$$

$$(-240)/(2*-0.075)$$

Solve each equation by factoring.

$$2x^{3} - 5x^{2} = 18x - 45$$

$$2x^{3} - 5x^{2} - 18x + 45 = 0$$

$$2x - 5 \qquad (2x - 5)(x^{2} - 9)$$

$$x^{2} 2x^{3} - 5x^{2} 2x - 5 = 0 \qquad (x^{+}3)$$

$$+5 + 5 \qquad x = \frac{5}{2}x = 3x = -3$$

Find the y-intercept for each parabola.

1.
$$y = -4x^2 + 6x$$

 $y = 0$

2.
$$y = 9x^{2} - 12 + 3x$$

$$y = 9x^{2} + 3x - 12$$

$$y = -12$$

Find the equation for the LOS of each parabola.

1.
$$y = 7x^2 + 8x - 11$$

 $\chi = \frac{-8}{2(7)} = \frac{-4}{7}$

2.
$$y = -2x^2 + 24$$

Does each parabola have a Maximum or a Minimum?

1.
$$y = 0.0015x^2 - 87x - 101$$

MIN

2.
$$y = -126x + 508x^2 + 93$$

Find the coordinates of the Vertex for each parabola.

1.
$$y = 3x^2 + 36x - 19$$
 $\left(-(\varphi_1 - 1)\right)$

$$y = -5x^2 + 18$$

$$\left(\begin{array}{c} 1 \\ 3 \end{array} \right)$$

Find all EXACT real solutions for each quadratic using square roots.

1.
$$313 - 5x^2 = 153$$

 $-313 - 313$
 $-5/2 = -160$
 $/=32$

$$2(x-1)^{2}+7=57$$

$$2(X-1)^{2}=50$$

$$(X-1)^{2}=35$$

$$X-1=\pm 5$$

$$X=6-4$$

Graph this parabola using at least 5 points.

$$y = x^2 - 4x - 2$$

$$1 \times 4 = 2$$

$$(2)$$
 $(2,-6)$

$$y = -3x^2 + 7$$

Solving quadratic equations:
$$ax^2 + bx + c = 0$$

Factoring **Square Roots**

But, it ony

But, works some this method of the time.

ONLY when b = 0

only works some of the time too.

IXL #15 - BB.5 & BB.6 due Friday at 4pm!