1. State if each parabola opens up or down.

ax 2+bx+C

b)
$$y = 4x - x^2 +$$

3. Find the coordinates of two other points on this parabola.

2. The LOS of the quadratic equation $y = -3x^2 - 12x + 7$ is x = -2.

 $-3(-2)^{2}-12(-2)+7$ (-2,19)State the coordinates of the vertex.

4. Write the equation of the LOS of this parabola.

4. Is the vertex of each parabola a Maximum or a Minimum?

a)
$$y = 3.07x^2 + 13x - 49$$

b)
$$y = x^2 - 270x$$

c)
$$y = -6x^2 + 97$$

Vertex

Line of Symmetry LOS
Axis of Symmetry

Does this parabola open Up or Down?

Section 10-1: Graphs of Quadratics

Standard Form of a Quadratic Function:

$$y = ax^2 + bx + c$$

Graph of a quadratic equation is a Parabola

Coordinates of the

 $Vertex\,(\,\underline{2}\,,\underline{L}\,)$

Eg) or the LOS: X=2

What is the relationship between the Line of Symmetry (LOS) and the vertex of a parabola? The Equation for the LOS and the x-coord of the vertex are ALWAYS the same

The vertex of a parabola is the point (-5, 8)

What is the equation for the LOS? $\chi = -5$

$$X = -5$$

Tell if each parabola has a Maximum or a Minimum:

Match the equations below to the graphs above.

The quadratic $y = x^2 + 6x - 1$ has the following LOS: x = -3 $\left(-3\right)^2 + \left(-3\right) - 1$

What are the coordinates of the vertex?

$$(-3, -10)$$

Given the quadratic $y = ax^2 + bx + c$

The parabola opens up if: 0 > 0

The parabola opens down if: $\alpha \angle 0$

Given the following points of a parabola find 3 other points.

Leave $Y_1 = x^2$

In Y_2 enter equations like this $Y_2 = ax^2$ using

$$Y = ax^2$$

 $a = 1$

Y₂ = ax² using different positive values for a. Notice how the graph changes and make some conclusions about what the value of a does to the graph.

Using a graphing calculator graph the following in Y_1 using a standard window.

$$Y_1 = x^2$$

This is the Parent Quadratic Function where a = 1

$$y = ax^2 + bx + c$$

What the coefficient a does to the graph of a parabola.

a>0 parabola opens up

a<0 parabola opens down

|a|

as |a| > 1 the more narrow the parabola gets.

bigger is more narrow

as 0 < |a| < 1 the wider the parabola gets.

smaller is wider

Solving Quadratic Equations:

A Quadratic Equation has the following form:

$$ax^2 + bx + c = 0$$
 This means $y = 0$

When y=0 the corresponding value of x is the x-intercept of the graph.

Put these parabolas in order from widest to narrowest.

Widest
$$y = -0.14x^2 + 8x + 14$$

$$y = 0.2x^2 + 92$$

$$y = -1.3x^2 - 4x + 11$$

$$y = 4x^2 - 27x - 100$$

Narrowest $y = -6x^2 + x - 75$

$$x^{2} - 2x - 8 = 0$$
 -4 2 -2

How do these solutions relate to the graph X=4 X=-2 of $y=x^2-2x-8$? X=4 X=-2

Sec 10-2: Quadratic Functions

Standard Form of a Quadratic Function:

$$y = ax^2 + bx + c$$

- a Determines if a parabola opens up or down
 - Determines if a parabola is taller (narrower) or shorter (wider)
- Moves the parabola up or down (vertical translation)
 (affecting the location of the vertex)

Another technique to solve quadratic equations that can be used SOMETIMES is using Square Roots

Ex: Solve.
$$(4x^{2}-25=0)(2x-5)=0$$

 $(2x+5)(2x-5)=0$
 $2x+5=0$
 $2x=5$
 $x=-5$
 $x=-5$

IXL #13 - AA.7 & BB.1 due today at 4pm!