1. Find the EXACT solutions to each equation using square roots.

a.
$$2x^2 + 8 = 56$$

$$2x^2 + 8 = 56$$

$$2x^2 + 8 = 56$$

$$1 = 48$$

$$1 = 48$$

$$1 = 48$$

$$1 = 48$$

$$1 = 48$$

$$1 = 48$$

a)
$$3x^{3} - 9x^{2} - 84x$$

 $3x(x^{2} - 3x - 28)$ $3x(x + 4)(x - 7)$
 $x + 4$
 $x +$

b.
$$(x-3)^2 - 5 = 76$$

 $+5$ $+5$
 $\sqrt{(x-3)^2} = \sqrt{81}$
 $x-3=-9$
 $x-3=-9$
 $x=12$ $x=-6$

1. Without using a graphing calculator put the following quadratic functions in order from Widest to Narrowest:

E.
$$y = 0.15x^2 - 6x + 34$$

B. $y = -0.8x^2 + 16x + 11$
A. $y = -3x^2 + 2x - 1$
C. $y = 5x^2 - 9x$
D. $y = -7x^2 - 8x - 26$

A.
$$y = -3x^2 + 2x - 1$$

C.
$$y = 5x^2 - 9x$$

D.
$$y = -7x^2 - 8x - 26$$

Narrowest

3. The LOS of the quadratic $y = 2x^2 - 12x + 5$ is x = 3. Write the coordinates of the vertex.

$$(3,-13)$$

2. The vertex of a parabola is (6, -1). Write the equation of the Line of Symmetry.

$$X = 5$$

4. State if the vertex of each parabola Opens Up/Down & if it has a Min/Max.

a)
$$y = -9x^2 + 4x + 15$$

c)
$$y = 20x^2 - 94x - 113$$

b)
$$y = 0.65x^2 - 18x + 3$$

Graphing Quadratics: Use at least 5 points. Include the vertex and two points on each side.

Graph: $y = -x^2 - 6x - 2$

(2)(-3,7)

(3) y=-2

Finding the Line of Symmetry:

$$y = ax^2 + bx + c$$

LOS:
$$x = \frac{-b}{2a}$$

"opposite of b divided by 2a"

Find the equation for the LOS in each Quadratic

1.
$$y = 3x^2 + 12x - 8$$
 2. $y = x^2 - 8x + 3$

2.
$$y = x^2 - 8x + 3$$

$$X = 3$$

$$X = \Rightarrow X = 4$$

3.
$$y = -2x^2 + 20x + 33 \chi = 5$$

Find the LOS:

$$y = 2x^2 + 16$$

$$\chi = 0$$

When there is no b term the LOS is always: x = 0

Once you've found the LOS what part of the parabola can you now find?

$$y = 2x^2 - 16x + 7$$

Find the equation for the LOS and the coordinates of the vertex. (4, -25)

$$(4, -25)$$

To find the y-intercept of any function you simply replace x with zero and find y.

Find the y-intercept of each quadratic.

1.
$$y = 3x^2 - 6x + 10$$
 $y = 10$

1.
$$y = 3x^2 - 6x + 10$$
 $y = 10$
2. $y = -5x^2 + x - 7$ $y = -7$

3.
$$y = 8.3x^2 + 13x$$
 $\sqrt{=0}$

When a quadratic is in Standard Form: $y = ax^2 + bx + c$ the y-intercept is always the constant (c).

Solving Quadratic Equations:

A Quadratic Equation has the following form:

$$ax^2 + bx + c = 0$$
 This means $y = 0$

When v=0 the corresponding value of x is the x-intercept of the graph.

Solutions to this equation are:

- zeros of the function
- x-intercepts of the graph

Do the following for this quadratic: $v = -4x^2 - 24x + 19$

- a. Write the eq for the LOS. $\chi = -3$
- b. Write the coordinates of the Vertex. (-3,55) c. Find the y-intercept. y = 10 d. Is the vertex a Max or a Min? y = 10

Ways to find x-intercepts of a quadratic function (solving the equation when y=0):

- Factoring
- Graphing
- Square Roots
- Quadratic Formula

Find the x-intercepts of this quadratic function:

$$y = x^{2} - 13x + 30$$

$$(X - 3)(X - 10) = 0$$

$$X = 3 + 10$$

Use the graph below to solve this equation:

$$x^{2} - 3x - 4 = 0$$

$$x = 4 - 1$$
they are the

they are the x-intercepts of the graph.

Now factor the quadratic:

$$(x - 4)(x + 1)$$

What are the zeros of the factors?

Solve by factoring:
$$\begin{array}{c|c} 2y & x & -4 \\ 2x^2 - x - 28 = 0 \\ -8 & + \\ 7x & -28 \\ \hline \end{array}$$

Solve using Square Roots.

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-8-8}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-8-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-8-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-8-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-8-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-5-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-5-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-5-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-5-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-5-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-5-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-5-5}$$

$$\frac{(x+3)^{2}+8=33}{(x+3)^{2}-5-5}$$

IXL #15 - BB.5 & BB.6 due Friday at 4pm!	