Standard Form of a Quadratic:

$$x^2 + 4x - 12 = (x + 6)(x - 2)$$

2. $6Q^2 - 17Q + 12$

$$\frac{72}{9} = \frac{30}{4} = \frac{60^2}{-80}$$

$$\begin{pmatrix} x^2 + 10x + 24 \\ \left(X + 6 \right) \left(X + 4 \right) \end{pmatrix}$$

$$x^2 + 10x + 24 = (x+6)(x+4)$$

Look at the "X" then look at the factors, what do you notice?

This always happens when the leading coefficient is 1

In the future when the leading coefficient is 1 you can skip the "Box" and go straight from the "X" to the Factors.

Factor completely: $\chi^2 + 14\chi + 33$

Because a=1 you can skip the "BOX".

Factor completely:

$$x^2 - 6x + 5$$

because a=1 you can skip the box.

because a=1 you may also be able to skip the

To find these just ask yourself: "what multiplys to the last and adds to the middle"

Factor each:

1.
$$y^2 - 14y + 48$$

2.
$$c^2 + 7c + 12$$

6.
$$w^2 - 19w + 84 = (W - 7)(W - 12)$$

7.
$$20E^2 - 13E + 2$$
 $(5E - 2)(4E - 1)$

9.
$$4Q^{2} - 13Q + 10$$

$$-8 \times -5$$

$$-13 \times -13 \times -10$$

$$-4Q \times -5Q \times -5G \times -6G \times -10$$

$$-(Q - 2)(WQ - 5)$$

10. $20y^2 + 36y + 9$

11.
$$15k^2 - 8k - 12$$

Factoring out GCF first.

You should always look for a GCF before you do any other kind of factoring!

Factor completely.

Factor completely.

$$6k^{2} - 18k - 324 \quad 6(K)^{2} - 3K - 54$$

$$6(K^{-9})(K + 6)$$

Factor completely.

a.
$$16x^2 - 64x + 28$$

Factor completely.

b. $4R^2 - 28R - 240$

IXL #11 -

Z.1 & Z.10 due Saturday, April 20th by 4pm!