1. Use this function: k(w) = 6 - 10w

a) Find w if
$$k(w) = 51$$
 $51 = 6 - 10W$
 $45 = -10W$
 $W = -4.5$

b) Find the Range for this Domain:
$$\{-2,0,1,2\}$$
 $H(-2) = b - \{0(-2) = 2b\}$ $H(0) = b - \{0(1) = -4\}$ $H(1) = b - \{0(1) = -4\}$ $H(2) = b - \{0(2) = -14\}$

2. State the Domain and Range of this graph:

D: X=2, X≥2 R: IR

3. Write a function rule for each table of values.

a)

-/			
Y			
21.5			
8.6			
-17.2			
-25.8			
-38.7			

$$y = m\chi$$

$$m = \chi = -4.3\chi$$

$$y = -4.3\chi$$

b)

J	_	117	
X	Υ		
-16	-75		
-12	-58		
0	-7		
4	10		
20	78	1 00 -	7
10	= "	m-	/
	_ (Luca	
(/	_	tm,	_
W	1 = 0	1.2	
	١	,-V.	- 7
V =	4.0	15X	/
/	•		

u = mx - 7

Section 5-5: Direct Variation

Direct Variation is a special Linear Function.

• It has a constant ratio $\frac{Y}{X} = k$

k = the Variation Constant

• Direct Variation Equation:

$$\frac{y}{x} = k$$
 or $y = kx$

Graph of direct variation

• The graph must be a line that passes through the origin.

$$\frac{y}{x}$$
 is a CONSTANT RATIO

4. Does each table represent Direct Variation?

If yes, state the variation constant and write a Direct Variation Equation.

a)

X Y

-9 -28.35

-6 -18.9

-4 -12.6

5 15.75

35	3.15
9	1
6	
5	V

Direct Variation?

14 | 44.1

If Yes,
$$k = 3.15$$

If yes, EQ:
$$V = 3.15$$

b)

Χ	Υ
13	31
15	28
17	25
19	22
21	19

If Yes,
$$k =$$

If yes, EQ:

Alg 1 Thur 12-28-18

Hwk #33 Answers:

12.
$$y = -\frac{10}{8}x \text{ or } -\frac{5}{4}x$$

13.
$$y = \frac{-9}{-5}x$$
 or $\frac{9}{5}x$

23. EQ:
$$E = 7.10h$$

$$E = Earnings(\$) \ h = \#hrs$$

24. Yes. EQ:
$$y = 1.8x$$

26. Yes. EQ:
$$y = -1.5x$$

41. EQ:
$$y = \frac{5}{2}x = 2.5x$$

45. a.
$$k = \frac{5}{160} = 0.03125 \frac{\text{qt}}{\text{lb}}$$

b.
$$b = 0.03125w$$

C.

$$b =$$
amount of blood $w =$ weight $_{lbs}$

23. For the data in each table, tell whether y varies directly v equation for the direct variation.

37. a. Writing How can you tell whether two sets b. How can you tell if a line is the graph of a d

Graph the direct variation that includes the giv Write an equation of the line.

- **45. Biology** The amount of blood in a perso weight. A person who weighs 160 lb has a
 - a. Find the constant of variation. b. Write an equation relating quarts of bc. Open-Ended Estimate the number of

1.) Direct Variation Equations:

$$\frac{y}{x} = k$$
 or $y = kx$

This Equation has a constant which means it CAN'T be written as y = kx

Is each equation direct variation? If yes, find the variation constant.

a.) -4+7x +
$$4 = 3y$$
 Yes
 $7X = 34$
 $y = 7X$

Stant.

$$h = 7$$

 $3^{b.)} - 10 + 2x + 1 = 3 + 4x - 2y$
 $-9 + 2x = 3 + 4x - 2y$
 $-9 + 2x = 3 + 4x - 2y$
 $-12 - 2x = 3 - 2y$
 $-12 - 2x = 3$
 -2
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3
 -3

Direct Variation Equations:

$$\frac{y}{x} = k$$
 or $y = kx$

2.) Does each equation represent Direct Variation?

1.
$$y-3 = x$$

NO $y = X+3$

3.
$$4x - 2y = 10$$

NO. -4χ - 4χ - 4χ - 4χ + 10

$$ye^{2}. \quad 4y = -12x$$

$$y = -3 \times$$

$$4. \quad 6x + 12y = 0$$

$$yes.$$

3.) Given the table shows a direct variation relationship, find the value of ?.

To solve Direct Variation situations you can use either equation or you can use Proportion

①
$$y=hx$$
 $h=55/-20$
 $=-2.75$
 $y=-3.75x$
 $-38.5=-2.75x$
 $x=14$

Χ	Υ	
-20	55	
-12		285
?	-38.5	$(2) \frac{55}{50} = \frac{-30.0}{2}$
32	-88	-20 X
		55X = 770
		X=14
		1-11

The data below comes from a Direct Variation relationship.

Χ	Υ
-5	-31.5
-2.4	-15.12
4.5	28.35
7	44.1
11	69.3

1. Write a Direct Variation Equation.

2. Find x when y = 30 30 = 6.3X X = 4.76

3. Find y when
$$x = 20$$

$$y = 6.3(20)$$

$$y = 126$$

The given point is part of a Direct Variation relationship.

Write the equation for each Direct Variation relationship.

4.
$$(9,5)$$
 $y = .56x$
 $y = \frac{5}{9}x$

5. (-4,1)
$$y = -35X$$

 $y = -\frac{1}{4}X$

The ordered pairs are for the same Direct Variation relationship.

Write a direct variation equation then find the missing value.

7.
$$(10,y)&(-3,75)$$

 $y = 75$
 $-3y = 750$
 $y = 750$
 $y = -250$

Remember the phrase: "Y varies directly with X"

The number of tires a company can make varies directly with the number of mployees at work that day. One a recent day the company had 32 workers present and they produced 776 tires.

- 1. Find the Variation Constant, include units. $h = \frac{77b}{3\lambda} = \frac{24.25}{111.05} \text{ mphyel}$ 3. Find the number of Employees that would be needed to make 1200 tires. 1200 = 24.35 mphyels. $\chi = 50 \text{ employees}.$ 2. Write a Direct Variation Equation.

$$X = 50$$
 employees

The amount of money raised varies directly with the number of people who contribute. \$1746 was raised when 24 people contributed.

1. Find the variation constant, including units,

H=1746 = 72.75 y=

2. Find the number of people it would take to raise \$10,000.

10,000 = 72.75XX = 138PPL

The amount of spaghetti required for a meal varies directly with the number of people that are served.

	^
# of people served	lbs of Spaghetti
12	9
28	21
48	36
68	51

1. Find the variation constant

including units.

2. Find amount of spaghetti needed to feed 100 people.

The point (4, -7) is on the graph of a direct variation relationship. (-4, 7)

Write an equation for this Direct Variation.

Hwk #34 - Practice 5.5 Worksheet (due tomorrow)

IXL #13 - Q.2 & Q.10 due tomorrow at 4pm!