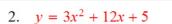

The graph of an equation containing |x| or |x | always turns out to be a V-SHAPE


These are called Absolute Value Equations

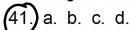
The graph of an equation containing x^2 or $(x)^2$ always turns out to be a PARABOLA

These are called Quadratic Equations

1. y = -4|x - 3| + 6

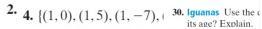
6 4 2 2 4 6 X

48-48+5 27-36+5 12-24+5 × 3-12+5


- **2**. Domain: $\{-3, -2, 0, 4\}$ Range: $\{6, 7, 8, 22\}$
- **4.** *Domain* : $\{1\}$ *Range* : $\{-7,0,5,6,1,10\}$
- **24**. *Range* : $\{-8, -2, 18\}$
- 28. Not a Function
- 29. Is a Function *Domain* : $\{-4, -1, 0, 3\}$

$$Range: \{-4\}$$

30. This is NOT a function.

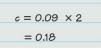

For an age of 4 yrs there is two different lengths.

- 32. a. $\{-300, -210, 0, 72\}$
 - b. Domain is # cameras sold and Range is the profit.
- 38. Yes 40.Yes 39. No

44. 18

Find the range of the function rule y = 5x - 2 for each domain. **24.** {-1.2, 0, 4}

Det32. a. Profit A store bought a case of dis


t Use the vertical-line test to determine whether each graph

41. Telephone Bill The cost of a long-distance telephone call c is a function of the time spent talking t in minutes. The rule c(t) = 0.09tdescribes the function for one service provider. At the right, a student has calculated how much a 2-hour phone call wou 44. g(3) + f(4)

- a. Writing Why does th
 - Use the functions f(x) = 2x and $g(x) = x^2 + 1$ to find the value of seem unreasonable?
 - b. Error Analysis What each expression.
 - c. How much would it cost to make a 2-hour phone call?
 - d. Critical Thinking What set of numbers is reasonable for the domain values? For the range values?

Section 5.2 - Relations and Functions Review

Relation: a set of ordered pairs.

(x,y)

b = 2a - 4 (a_1b)

Domain: a set of x-coordinates (first coordinate) of the ordered pairs.

Range: a set of y-coordinates (second coordinate) of the ordered pairs.

Rules for writing domain and range

- 1.) listed from least to greatest.
- 2.) no repeating values.

Example 1: Find the domain and range of the relation represented by the data in the table.

$$\{(4,3),(-2,1),(-1,3),(4,-2),(-1,1)\}$$

$$D: -a, -1, 4$$

$$R: -a, 1, 3$$

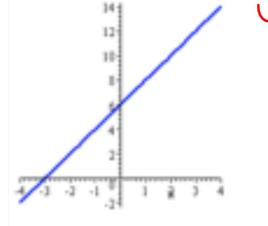
Your Turn 1: Find the domain and range of the relation represented by the data in the table.

$$\{(18,4.25),(20,4.40),(21,4.25),(14,5),(18,4.85)\}$$

$$D: |4| |8| |20| |2|$$

$$R: |4.25| |4.40| |4.85| |5$$

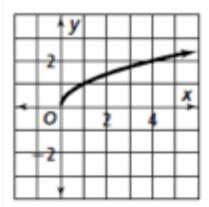
one value in the range to each value in the domain.


Example 2: Using a Mapping Diagram
Determine whether the relation is a function $\{(11,-2),(12,-1),(13,-2),(20,7)\}$

Your Turn 2: Using a Mapping Diagram Determine whether the relation is a function

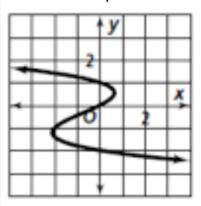
Example 3: Using the Vertical-Line Test

Determine if the following graph is a function?


Explain

Your Turn 3: Using the Vertical-Line Test

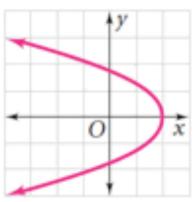
Determine if the following graph is a function?


Explain

yes y = 1x

Example 4: Using a Vertical-Line Test

Determine if the following graph is a function? Explain



Not a funct.

Your Turn 4: Using a Vertical-Line Test

Determine if the following graph is a function?

Explain

Not a function

A function r	ule:	00	۰۸	12011	H	
	<u>//</u> U/\	1	•			
	A es	CYi	bes	a	funct	ion

Example 5: Evaluate f(x) = -3x - 10 for x = 6

$$\xi(6) = -3(6) - 10$$

 $\xi(9) = -28$

Your Turn 5: Evaluate $f(x) = 2x^2 + 1$ for x = 4 $f(4) = 2(4)^2 + 1$ f(4) = 33

Example 6: Evaluate
$$f(x) = -3x^2 + 5$$
 for the domain $\{-3,1,4\}$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

$$\{-3,1,4\}$$

Your Turn 6: Evaluate
$$f(x) = x - 6$$
 for the domain $\{-2,0,5\}$ $\{-8,-6,-13\}$ $\{(-3) = -8\}$ $\{(5) = -1\}$

Evaluating Functions & Writing Domain/Range Notes

Example 1) Write the following function in function notation

$$y = 2x - 4$$

Your Turn 1) Write the following function in function notation

$$y = -3x + 5$$
 $f(X) = -3X + 5$

Example 2) Evaluate the following function If f(x) = -2x + 5, then find f(4) f(4) = -3(4) + 5 X = 4= -3 Your Turn 2) Evaluate the following function If f(x) = 4x - 1, then find f(-2) f(-2) = 4(-2) - 1= -9

Example 3) Evaluate the following function If $f(x) = x^3 + 5(x-2)$, then find f(-1) $f(-1) = (-1)^3 + 5(-1-2)$ = -1 - 15

Your Turn 3) Evaluate the following function If $f(x) = 3x^2 - 2(x+4)$, then find f(3) $f(3) = 3(3)^2 - 2(3+4)$ = 37 - 14 = 13

Example 4) State the domain and range of the following relation

Your Turn 4) State the domain and range of the following relation

$$\{(-2,-9),(3,2),(5,4),(8,-3),(3,5),(1,7)\}$$

Hwk #29 - Practice 5-2 Worksheet

- Show YOUR work on a separate sheet of paper.
- o IXL #11 Q.1 & Q.2 due Friday at 4pm!