Graph each using at least 5 points.

1.
$$y = -2|x - 3| + 5$$

2.
$$f(x) = 3(x+2)^2 - 6$$

3. Use these functions:
$$f(x) = 2x^2 - 5$$

$$g(y) = 5 - 4y$$

Find
$$4f(2) - g(-3)$$

3. Use these functions:
$$f(x) = 2x^2 - 5$$
 $g(y) = 5 - 4y$
Find $4f(2) - g(-3)$ $f(3) = 3$ $g(y) = 5 - 4y$
 $f(3) - 17$ $f(3) = 3$ $f(3) = 3$ $f(3) = 5 + 12$ $f(3) = 17$

$$9(-3)=5+12$$

= 17

$$(=-17)$$

4. Find the Domain and Range of this relation shown below.

Range: $y \ge -3$

- 1. Write the domain and range of each graph.

- Domain:
- $x \ge 2$ $y \le -3$, $y \ge 1$ Range:

- 2. Find the domain and range of each.
- a) (6,7) (4,-1) (-6,7) (-1,3)
- b) Use the graph below.

- 3. Is each relation a function?
- a) (-6,4),(-2,6),(1,4),(5,-1),(2,5)

b) The table below

X	Υ
8	6
-3	-9
2	-7
-3	4

ND.

c) The graph below

4. State the domain and range of each graph.

a)

Range:

b)

- 5. Use these two functions: $h(m) = 3m^2 10$ w(c) = 4c 1a) Find h(-4) h(-4) = 3(-4) b) Find c if w(c) = 25 = 38 95 = 4c 1
 - 26=4C =6.5
- c) Find 10h(2) + w(2)

=97

6.) Use what you know about each equation to state what the shape of the graph will be and, if applicable, which way it opens

$$y = 3x^2 + 6x + 1$$

$$y = -6x + 1$$

$$y = -2|x+1| - 5$$

Section 5-4

Write a function rule for this situation. Define your variables.

1. The amount of money you raise is a function of how many miles you walk. People have pledged a total of \$7.50 for every mile you walk.

EQ: y = 7.50

Variables:

 $\chi = mi$

2. A Regular Polygon has sides that are equal in length. The perimeter of a Regular Pentagon is a function of the length of each side.

EQ: 4=5

Variables:

y=perimeter X=length of each Side.

3. The amount of money in your account is a function of how many deposits you've made. You had \$136 in your account then deposit \$15 each week.

$$|36 + 15X = \text{Wariables: } \text{Y=} \text{#}$$

$$\text{X = Wlehs.}$$

Write a function rule to model the data in each table.

1.

Χ	Υ
2	5
4	7
6	9
8	11

Χ	Υ
-4	-10
-2	-5
2	5
4	10

Write a function rule to model the data in each table.

3.

	Χ	Υ	
	-2	-9	
	-1	-8	
(0	-7)
	1	-6	

 $y = x - 7^{4}$

	Χ	Υ	
	-24	6	
	-16	4	
(0	0	
	8	-2	
	12	-3	

y = X

Write a function rule for each situation.

- 1. The total hours spent cutting lawns if each lawn takes 1.25 hours to cut.
- 2. A rental car costs \$18.50 for the day plus \$0.25 per mile for every mile over 100 miles.
- 3. The number of stamps Juan has if he has three more than Ali.
- 4. The amount of Yolanda's paycheck if she gets paid 5% of her total sales each month.

Write a function rule for each situation. Define your variables.

1. The total hours spent cutting lawns if each lawn takes 1.25 hours to cut.

EQ:
$$y = 1.25 X$$

Variables:
$$y = hy$$

 $\chi = (ahn5)$

2. A rental car costs \$18.50 for the day plus \$0.25 per mile for every mile over 100 miles.

very mile over 100 miles.

EQ:
$$y = 18.50 + .25$$
 Variables: $y = 4$ $m = mi$.

$$M = Mi$$

3. The number of stamps Juan has if he has three more than Ali.

4. The amount of Yolanda's paycheck if she gets paid 5% of her total sales each month.

amount of Yolanda's paycheck if sne s
ier total sales each month. $y = 1200 + 0.05 \text{ Wariables:} \quad y = 4$ x = total x = total

5. Write a function rule for this situation. Define your variables. The number of shots Susan makes is a function of how many shots she takes. She makes 70% of her shots.

Variables: y = Shots taken $\chi = Shots made$

1. Write a function rule for the data in each table.

a)	
X	у
-6	21
-4	14
0	0
8	-28

$$y = -3.5$$

b)

	X	у	
	-8	3	
	-5	6	
(0	11	
	3	14	
		_	

2. Write a function rule to model the data in this table.

3. Write a function rule to model the data in this table.

 $X = \lambda X - 3$

4. Write a function rule to model the data in this table.

X	У
-4	29
-3	25
-1	17
0	13
2	5

tion rule to model the data in this table.

$$y = x + 13 \qquad y = -4x + 13$$

$$5 = m(2) + 13$$

$$-8 = 2m$$

$$m = -4$$

You can now complete Hwk #31 (due Monday after break)

Sec 5-4

Pages 256-257

Problems 4-6, 12-14, 21

IXL #12: Q.5 & Q.7 due Friday at 4pm!