Find the exact solution to each equation.

1.
$$5 + 6p - 19 = 3p$$

When all the variables cancel out in an equation:

It means that it doesn't matter what you substitute for the variable the equation is either going to ALWAYS be true or ALWAYS be false.

No Solution

Solution is All Real #'s

2.
$$4-3(m+2)+7m = -3+8+4m-2$$

 $4-3m-6+7m=-3+8+4m-2$
 $4m-2=4m+3$
 $-2+3$

3.
$$9k+2-3k-14 = 3(2k-5)+3$$

 $9k+2-3k-14 = 6k-15+3$
 $6k-12 = 6k-12$
Intrife Sols.

Section 2-6: Formulas

A <u>literal equation</u> is an equation involving two or more variables. Formulas are special types of literal equations.

1. Solve for
$$Q$$

$$\frac{17 = 230}{23} \ \ \phi = 17$$

1. Solve for
$$L$$

$$\underbrace{A}_{W} = LW$$

Don't use a calculator!

$$-\sqrt{3} = 5W + \sqrt{3}$$

2. Solve for
$$\frac{y}{MX} = \frac{hx + b}{MX - hX}$$

$$\int = \frac{y - hx + b}{MX - hX}$$

$$b = y - mx$$

$$W = 13 - 13$$

3. Solve for
$$h$$
 $2 \cdot A = 1$

3. Solve for
$$h$$

$$2 \cdot A = \frac{1}{2}bh \cdot 2$$

$$2A = \frac{1}{b}h$$

$$b$$

$$M = \frac{1}{2}A$$

4. Solve for
$$t = p$$

5. Solve for
$$x_1$$
 2.

5. Solve for
$$x_1$$
 $2 \cdot M = \frac{x_1 + x_2}{2}$

$$2M = X_1 + X_2$$

 $-X_2 - X_2$
 $2M - X_2 = X_1$

6. Solve for
$$y$$

6. Solve for
$$y$$
 $Ax + By = C$ Ax

$$By = C - Ax$$

$$By = C - Ax$$

$$y = \frac{C - Ax}{\beta}$$

7.) Solve for A
$$A + R = 5(C - 2A)$$

$$A + R = 5(C - 10A)$$

$$+ 10A + 10A$$

$$+ 10A$$

$$+ 10A + 10A$$

$$+ 10A + 10A$$

$$+ 10A + 10A$$

$$+ 10A + 10A$$

$$+ 10A$$

$$+ 10A + 10A$$

$$+ 10A$$

8.) Solve for N
$$N + Q = B(K - RN)$$

$$N + U = BK - BKN$$

$$+ BKN$$

$$+ BKN$$

$$N + BKN + U = BK$$

$$K = R + M(W-A)$$

$$F = F + M(W-A)$$

$$-MW - MW$$

$$-MW + K = R - MA - K$$

$$-MW = R - MA - K$$

$$-MW = R - MA - K$$

$$-MW = R - MA - K$$

10.) Solve for K
$$A = B + \frac{K - R}{E}$$

$$E(A - B) = K - R$$

- 1.) **Construction** Bricklayers use the formula N = 7LH to estimate the number of bricks N needed to build a wall of height H and length L.
 - **a.** Solve the equation for *H*.
 - **b.** What is the height of a wall that is 30 feet long and that requires 2310 bricks to build?

a.
$$N=7LH$$

$$H=N$$

$$7L$$

o.
$$H = \frac{2310}{(7)(30)}$$

= $\frac{2310}{310} = 1140$

From our previous example,

$$A = P + Prt$$

where A is the amount in the account, P is the principal, r is the interest rate, and t is the time in years that the money has been invested. By the result of Example 3 we have

3.) Suppose that the amount in an account, 4 years after a principal of \$3000 was invested, is \$3720. What was the interest rate?

$$\int = \frac{A - P}{Pt} = \frac{3720 - 3000}{(3000)(4)}$$

$$= 0.06 670$$

You can now finish Hwk #15 Sec 2-6

Pages 113-114 Due tomorrow

Problems 1-5, 7, 12, 24, 26, 31, 33, 35, 39

IXL #6 - J.7 & J.8 due Friday, Oct. 5th at 4pm!