Forces and Interaction: Action-Reaction Pairs

In each case, draw a free body diagram of the object. For every force you draw, identify the reaction force.

1. A book sitting at rest on a table.

 FBD

 ![Free Body Diagram](image)

 Action

 Earth pulls down on Book
 Table pushes up on Book

 Reaction

 Book pulls up on Earth
 Book pushes down on Table

 FBD

 ![Free Body Diagram](image)

 Action

 Girl pushes Book forward
 Table pushes up on Book
 Table pulls back on Book
 Earth pulls down on Book

 Reaction

 Book pushes back on Girl
 Book pushes down on Table
 Book pushes forward on Table
 Book pulls up on Earth

3. An apple falling from a tree. Include air resistance.

 FBD

 ![Free Body Diagram](image)

 Action

 Earth pulls down on Apple
 Air pushes up on Apple

 Reaction

 Apple pulls down on Earth
 Apple pushes down on Air

4. A helicopter hovering stationary in the air.

 FBD

 ![Free Body Diagram](image)

 Action

 Earth pulls down on Helicopter
 Air pushes up on Helicopter

 Reaction

 Helicopter pulls up on Earth
 Helicopter pushes down on Air

5. A rocket flying through space.

 FBD

 ![Free Body Diagram](image)

 Action

 Gas pushes Rocket forward

 Reaction

 Rocket pushes Gas backward

6. An airplane flying in a straight line through the air.

 FBD

 ![Free Body Diagram](image)

 Action

 Earth pulls down on Plane
 Air pushes Plane forward
 Air pushes Plane upward
 Air pushes back on Plane

 Reaction

 Plane pulls up on Earth
 Plane pushes Air backward
 Plane pushes Air downward
 Plane pushes Air forward
Equal Force ≠ Equal Acceleration

7. A father (80 kg) and his young son (25 kg) are standing on ice. The son pushes his father backward with a force of 15 N. What will the father’s acceleration be? What will the son’s acceleration be?

\[a_F = \frac{F_{SF}}{m_F} = \frac{(15 \text{ N})}{(80 \text{ kg})} = 0.1875 \text{ m/s}^2 \]
\[F_{SF} = 15 \text{ N}, \quad a_F = 0.188 \text{ m/s}^2 \]

\[a_S = \frac{F_{FS}}{m_S} = \frac{(15 \text{ N})}{(25 \text{ kg})} = 0.6 \text{ m/s}^2 \]
\[F_{FS} = 15 \text{ N}, \quad a_S = 0.6 \text{ m/s}^2 \]

8. A person firing a rifle (80 kg) fires a bullet (mass = 0.030 kg). The bullet is fired forward with an acceleration of 10,000 m/s². How much backwards acceleration does the person experience?

\[F_{PB} = m_B \times a_B = (0.030 \text{ kg}) \times (10,000 \text{ m/s}^2) = 300 \text{ N} \]
\[a_B = \frac{F_{PB}}{m_B} = \frac{300 \text{ N}}{(0.030 \text{ kg})} = 10,000 \text{ m/s}^2 \]

\[a_P = \frac{F_{PA}}{m_p} = \frac{(300 \text{ N})}{(80 \text{ kg})} = 3.75 \text{ m/s}^2 \]
\[F_{PA} = 300 \text{ N}, \quad a_P = 3.75 \text{ m/s}^2 \]

9. A person (70 kg) takes a step forward on an airplane (300,000 kg) with an acceleration of 3 m/s². How much backwards acceleration does the airplane experience as a result of the person stepping forward?

\[F_{AP} = m_P \times a_P = (70 \text{ kg}) \times (3 \text{ m/s}^2) = 210 \text{ N} \]
\[a_P = \frac{F_{AP}}{m_A} = \frac{210 \text{ N}}{(300,000 \text{ kg})} = 0.0007 \text{ m/s}^2 \]

\[F_{PA} = \frac{F_{AP}}{m_P} = \frac{(210 \text{ N})}{(70 \text{ kg})} = 3 \text{ m/s}^2 \]
\[a_A = \frac{F_{PA}}{m_A} = \frac{(210 \text{ N})}{(300,000 \text{ kg})} = 0.0007 \text{ m/s}^2 \]

10. What is all 200 people on the airplane took a step forward at the same time? What would the resulting force and acceleration on the airplane be then?

\[F_{PA} = 200 \times (210 \text{ N}) = 42,000 \text{ N} \]
\[a_P = \frac{F_{PA}}{m_A} = \frac{(42,000 \text{ N})}{(300,000 \text{ kg})} = 0.14 \text{ m/s}^2 \]

\[F_{PA} = 42,000 \text{ N}, \quad a_P = 0.14 \text{ m/s}^2 \]

11. A person (70 kg) jumps off of a building and falls with an acceleration of 9.8 m/s². How fast does the Earth accelerate upwards towards him?

\[F_{EP} = m_p \times g = (70 \text{ kg}) \times (9.8 \text{ m/s}^2) = 686 \text{ N} \]
\[a_E = \frac{F_{EP}}{m_E} = \frac{686 \text{ N}}{(6 \times 10^{24} \text{ kg})} = 1.14 \times 10^{-22} \text{ m/s}^2 \]

\[F_{EP} = 686 \text{ N}, \quad a_E = 1.14 \times 10^{-22} \text{ m/s}^2 \]

12. How far does the person fall towards the Earth in 1 second? How far does the Earth move towards the person in 1 second?

\[d_p = \frac{1}{2} a_P t^2 = \frac{1}{2} (9.8 \text{ m/s}^2)(1 \text{ s})^2 = 4.9 \text{ m} \]
\[d_E = \frac{1}{2} a_E t^2 = \frac{1}{2} (1.14 \times 10^{-22} \text{ m/s}^2)(1 \text{ s})^2 = 5.7 \times 10^{-23} \text{ m} \]

\[d_p = 4.9 \text{ m} \]
\[d_E = 5.7 \times 10^{-23} \text{ m} \]

\[(this \ is \ about \ ten \ trillion \ times \ smaller \ than \ the \ width \ of \ an \ atom!) \]

13. What if all 6 billion (6 x 10⁹) people on Earth jumped of a building at the same time on the same side of the Earth. What would be the acceleration then?

\[F_{PE} = (6,000,000,000 \times 686 \text{ N}) = 4.11 \times 10^{12} \text{ N} \]
\[a_E = F_{PE} / m_E = (4.11 \times 10^{12} \text{ N}) / (6 \times 10^{24} \text{ kg}) = 6.86 \times 10^{-13} \text{ m/s}^2 \]

\[F_{PE} = 4.11 \times 10^{12} \text{ N}, \quad a_E = 6.86 \times 10^{-13} \text{ m/s}^2 \]

14. How far would the Earth move in 1 second as a result of everyone jumping at once?

\[d_E = \frac{1}{2} a_E t^2 = \frac{1}{2} (6.86 \times 10^{-13} \text{ m/s}^2)(1 \text{ s})^2 = 3.43 \times 10^{-11} \text{ m} \]
\[d_E = 3.43 \times 10^{-11} \text{ m} \]

\[(this \ is \ STILL \ about \ one \ thousand \ times \ smaller \ than \ the \ width \ of \ an \ atom!!) \]