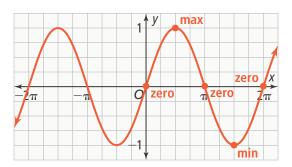
PRACTICE & PROBLEM SOLVING

- 8. Use Structure Write the equations of three cosine functions that have an amplitude of $\frac{1}{2}$ and that have periods of $\frac{1}{2}$, 2, and 4. Then graph and label all three equations on the same coordinate plane.
- 9. Look for Relationships Explain why the sine function is a periodic function.
- 10. Error Analysis Describe and correct the error a student made in solving for the period of the given function.

$$y = \frac{1}{4} \sin \frac{2}{3}x$$

period = $\frac{2\pi}{\frac{1}{4}}$
period = $\frac{2\pi}{1} \times \frac{4}{1}$
period = 8π

11. Look for Relationships A "five-point pattern" can be used to graph sine and cosine functions. The five-point pattern for the sine function when a > 0 is zero-max-zero-min-zero, as shown on the graph. What is the five-point pattern for the sine function when a < 0?



12. Higher Order Thinking Use a graphing calculator to graph $y = \sin x$ and $y = \csc x$. What do you notice about the graph of $y = \csc x$ where y = 0 on the graph of $y = \sin x$? (*Hint*: $y = \csc x$ is equivalent to $y = \frac{1}{\sin x}$)

PRACTICE

Scan for

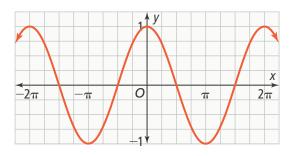
Multimedia

13. Identify the domain, range, and period of the function $y = \cos x$. SEE EXAMPLE 1

Practice

Additional Exercises Available Online

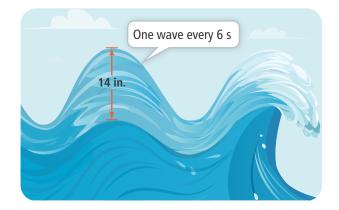
(U) Tutorial



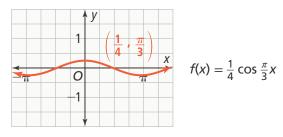
What are the amplitude and period of each function? SEE EXAMPLE 2

14.
$$y = \frac{1}{2} \cos \frac{1}{8} x$$
 15. $y = 5 \sin \frac{1}{4} x$

- **16.** Use technology to graph $y = \frac{3}{4} \sin 2x$. What is the frequency? What is the average rate of change on the interval $[0, \pi]$? SEE EXAMPLE 3
- **17.** A particle in the ocean moves with a wave. The motion of the particle can be modeled by the cosine function. If a 14 in. wave occurs every 6 s, write a function that models the height of the particle in inches y as it moves in seconds x. What is the period of the function? SEE EXAMPLE 4



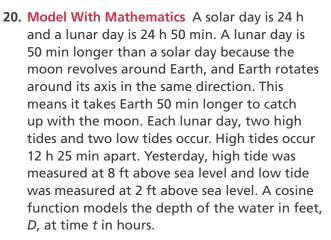
18. How to the periods of the two functions compare? SEE EXAMPLE 5



PRACTICE & PROBLEM SOLVING

APPLY

- **19.** Make Sense and Persevere The relationship between the height of a point on a unicyle wheel, in feet, and time, in seconds, can be modeled by the sine function. A unicycle wheel has a diameter of 2 ft. A marker was placed on the wheel at time t = 0 s with a height of h = 0 ft. When Esteban is riding the unicycle, it takes $\frac{\pi}{2}$ s for the unicycle wheel to make one complete revolution.
 - a. What is the period of the function?
 - **b.** What is the amplitude of the function?
 - **c.** Write an equation to represent this situation.
 - d. Graph the function.
 - e. How many revolutions will the unicycle wheel make in 4π s when Esteban is riding the unicycle?



marker

t = 0

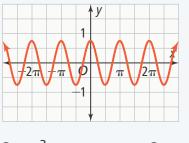
- a. What is the period of the function?
- b. The amplitude is the difference between the depth of the water at high tide and the average depth of the water. What is the amplitude?
- **c.** Write an equation to represent *D* as a function of *t*.

ASSESSMENT PRACTICE

21. Find the key features of the function $y = 8\cos(\frac{\pi}{6}x)$. Write the correct value from the box next to each key feature.

amplitude =	3	8	12
period =	<u>1</u>	1	$\frac{\pi}{2}$
frequency =	8	12	3
midline =	<i>x</i> = 0		<i>y</i> = 0

22. SAT/ACT What is the equation of the graph?



- (a) $y = \frac{3}{4}\cos(2x)$ (b) $y = \frac{3}{4}\sin(2x)$ (c) $y = \frac{3}{4}\sin(2x)$ (c) $y = \frac{3}{4}\sin(2x)$ (c) $y = \frac{3}{4}\sin(2x)$ (c) $y = \frac{3}{4}\sin(2x)$
- **23.** Performance Task Danielle is investigating how the signs of the parameters *a* and *b* create transformations of the sine function.

Part A Graph $y = (\sin 2x)$ and $y = -\sin (2x)$ on the same coordinate plane.

Part B How are the graphs of y = sin (2x) and y = -sin (2x) related?

Part C Graph $y = \sin(2x)$ and $y = \sin(-2x)$ on the same coordinate plane.

Part D How are the graphs of $y = \sin 2x$ and $y = \sin (-2x)$ related?

Part E How is the graph of $y = a \sin(bx)$ affected when *a* or *b* is replaced with its opposite? Explain.