Choose the correct answer below.

- A. The common logarithm has the same value as the natural logarithm. Use the common logarithm button to find the value of log 65.
- \bigcirc B. Graph the function $y = e^{x}$, and use the table to find an approximate value of x for which y is equal to 65.
- \bigcirc C. Finding the natural logarithm of a value x is the same as evaluating e^{X} . Use the calculator to evaluate the expression e^{65} .
- Op. Graph the function y = 10^x, and use the table to find an approximate value of x for which y is equal to 65.

Describe and correct the error a student made in solving the exponential equation

Select the correct choice and fill in the answer box to complete your choice. (Simplify your answer.)

- A. The student used the natural logarithm instead of the common logarithm. The solution should be t = _____.
- O B. The student did not simplify In e. The simplified answer is t = ...
- C. The student did not convert to logarithmic form correctly. The solution should be t = _____.
- O D. The student did not divide correctly. The solution should be t = ...

Use the graph of $y = 3^X$ to estimate the value of $\log_3 50$. Explain your reasoning.

A student says that $\log_3\left(\frac{1}{27}\right)$ simplifies to -3. Is the student correct? Explain.

Explain why the expression In 1,000 is not equal to 3.

Choose the correct answer below.

- \bigcirc A. The base of the natural logarithm is e, not 10, and e^3 is not equal to 1,000.
- \bigcirc B. Instead of solving the equation $10^{x} = 1,000$ for x, the correct equation to solve for x is $1,000^{x} = 10$.
- Oc. The value of a logarithmic expression must be a power of 10, and 3 is not a power of 10.
- \bigcirc D. The base of the natural logarithm is e, not 3. The value of e is approximately 2.7, not 3.

Write the inverse of the exponential function.

$$y = 18^{X}$$