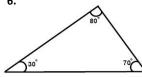

REVIEW Unit 2 Test congruent triangles

Classify each triangle. Choose all that apply.

3.

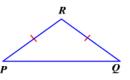
- A. right
- B. acute
- c. obtuse
- **D.** equiangular
- E. isosceles
- E. congruent
- F. equilateral



5.



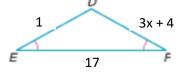
6.



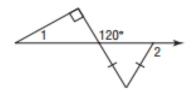
Identify.

7. remote interior angles of $\angle 4$

8. vertex angle and base angles

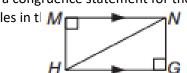


Find each requested value.

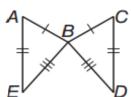

9. If ABC is equilateral, find the length of the

10. Find x.

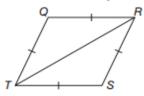
11. Find the $m \angle 1$ and $m \angle 2$.

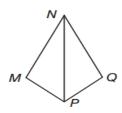


Answer the questions about corresponding parts of congruent triangles.

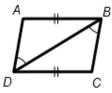

12. If $\Delta TGS \cong \Delta KEL$, which angle in ΔKEL correspond to ∠T?

13. If $\Delta TGS \cong \Delta KEL$, which segment in ΔTGS correspond to EK?

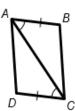

14. Write a congruence statement for the triangles in t M

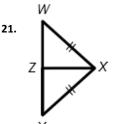

- 15. Based on your answer to the last question, which segment is congruent to NG?
- 16. What are the congruent triangles in the diagram?

17. The rhombus QRST is made up of 2 congruent isosceles triangles. Given m∠QRS = 34, what is the

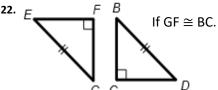


18. Quadrilateral MNQP is made of two congruent triangles. NP bisects $\angle N$ and $\angle P$. In the quadrilateral, $m \angle N = 38^{\circ}$ and $m \angle P = 104^{\circ}$. What is the measure of $\angle Q$?

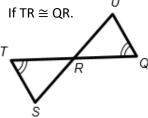



Determine if the triangles are congruent. Write the triangle congruence statements and name the postulate or

theorem used. If not, write not enough infor-



If AB | | CD.



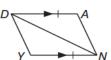
If Z is midpoint of WY.

23. E

Fill in the missing reasons.

25. Given: L is the midpoint of \overline{JM} . $\overline{JK} \mid\mid \overline{NM}$

Prove: $\triangle JKL \cong \triangle MNL$


Proof:

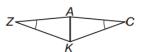
	N	_
J	/	\longrightarrow_{M}
K	, <u>L</u>	

26. Given:
$$\overline{\underline{DA}} \mid \mid \overline{\overline{YN}}$$
 $\overline{DA} \cong \overline{YN}$

Prove: $\angle NDY \cong \angle DNA$

Proof:

11001.		
Statements	Reasons	
1. L is the midpoint of \overline{JM} .	1. Given	
2	2. Definition of midpoint	
3. $\overline{JK} \parallel \overline{MN}$	3. Given	
$4. \angle JKL \cong \angle MNL$	4	
5	5	
6. $\triangle JKL \cong \triangle MNL$	6.	

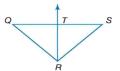

roof:		
Statements	Reasons	
1. $\overline{DA} \parallel \overline{YN}$	1. Given	
2	2. Alt. int. \triangle are \cong .	
3. $\overline{DA} \cong \overline{YN}$	3. Given	
4	4. Reflexive Property	
$5. \triangle NDY \cong \triangle DNA$	5	
$6. \angle NDY \cong \angle DNA$	6	

Write 2 column proofs for the following.

27.

Given: $\angle Z \cong \angle C$ \overline{AK} bisects $\angle ZKC$.

Prove: $\triangle AKZ \cong \triangle AKC$

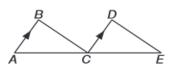


28.

Given: $\triangle QRS$ is isosceles with $\overline{QR} \cong \overline{SR}$.

 \overline{RT} bisects \overline{QS} at point T.

 $\triangle QRT \cong \triangle SRT$ Prove:


29. Given: AB = CD, $\overrightarrow{AB} \parallel \overrightarrow{CD}$ Prove: $\triangle ACD \cong \triangle CAB$

30.

Given: \overline{CD} bisects \overline{AE} , $\overline{AB} \parallel \overline{CD}$ $\angle E \cong \angle BCA$

Prove: $\triangle ABC \cong \triangle CDE$

