Assume that $\overline{AB}\cong \overline{CD}$ and $\overline{BC}\cong \overline{DE}$. What additional Information would you need to prove that $\Delta ABC\cong \Delta CDE$ by SSS?

Assume that $\overline{AB}\cong \overline{CD}$ and $\overline{BC}\cong \overline{DE}$. What additional Information would you need to prove that $\triangle ABC\cong\triangle CDE$ by SAS?

$$\triangle CDE \cong \triangle FGH$$
, m<6 = (x + 17)°, m

$$\Delta RST \cong \Delta XYZ$$
, m(11x - 1)^{\circ}, m(9x + 5)^{\circ}, and RT = $7x + 5$. Find XZ.

 $\Delta JKL \cong \Delta MNO$, m<K = $(3x + 7)^{\circ}$, m<N = $(2x + 24)^{\circ}$, m<L = $(5x - 42)^{\circ}$, and m<O = $(4x - 25)^{\circ}$. Find the measure of <M.

Find the measure of each angle in $\triangle ABC$ if:

$$\angle A = (x)^{\circ}$$

 $\angle B = (1.5x+15)^{\circ}$
 $\angle C = (3.5x-15)^{\circ}$

State the postulate or theorem you would use to prove each pair of triangles congruent. If the triangles cannot be proved congruent, write *not possible*.

