A **Segment Bisector** is a point, ray, line, line segment, or plane that intersects the segment at it's midpoint.

Example 1:

Example 2:

The **Midpoint** of a segment divides a segment into two congruent segments

The Midpoint Formula:

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the midpoint M of \overline{AB} has coordinates:

$$M(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$$

Example 3: Find the midpoint of \overline{AB} .

Example 4: Find the midpoint of \overline{CD} .

The Distance Formula:

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the distance between A and B is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Example 5: Find the distance between A and B.

Example 6: Find the distance between C and D.

In Exercises 1 and 2, identify the segment bisector of \overline{PQ} . Then find PQ.

1.

2

Example 1:

Find the distance between (-3,1) and (2,3).

Example 2:

Find the distance between (-2,1) and (2,5).

Example 3: Find the midpoint of the line segment with endpoints (-3, -1) and (7, -5).

Example 4: Find the midpoint of the line segment with endpoints (6, -3) and (4, -7).