Glue Solution(s) Here	Example 1: Glue Equation Here	Glue Description of Method Here	Solving By Factoring
Glue Solution(s) Here	Example 1: Glue Equation Here	Glue Description of Method Here	Solving By Quadratic Formula
Glue Solution(s) Here	<u>Example 1:</u> Glue Equation Here	Glue Description of Method Here	Solving By Taking Square Roots

Glue the case when you use this method here.	Glue Solution(s) Here	Example 2: Glue Equation Here	Factoring continued
Glue the case when you use this method here.	Glue Solution(s) Here	Example 2: Glue Equation Here	Quadratic Formula continued
Glue the case when you use this method here.	Glue Solution(s) Here	Example 2: Glue Equation Here	Square Roots continued

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Step 1:Isolate the squared term.

Step 2:Take the square root of each

side. Don't forget the ±.

Step 3:Simplify the radical.

Step 4:Get x by itself.

The process of finding the roots of a quadratic equation by finding two integers that multiply to give the product of *ac* and add to give the sum of *b*. Don't forget to set each factor equal to zero before solving!

SOLUTIONS

$x = 3 \pm 5i\sqrt{2}$	$x = \frac{-2 \pm i\sqrt{2}}{3}$
$x=1\pm\sqrt{6}$	x = 7 and x = 9
x = -8 and 7	$x = \pm 6\sqrt{2}$

WHEN TO USE EACH METHOD

$$b = 0$$
OR
the quadratic is in "vertex form"

$$a = 1$$

$$a \neq 1$$

EQUATIONS

$x^2 + x - 56 = 0$	$3x^2 - 4 = 212$
$(x-3)^2 + 10 = -40$	$2x^2 - 4x - 10 = 0$
$3x^2 + 4x + 2 = 0$	$x^2 - 16x + 63 = 0$

.