Trig/Precalc Chapter 2 Final Review

Write an equation for the linear function f satisfying the given conditions.

1)
$$f(-3) = 8$$
 and $f(1) = 4$

Write an equation for the quadratic function whose graph contains the given vertex and point.

(Write your answer in vertex form.)

Solve the problem algebraically or graphically. If graphically, show sketch and window.

3) The number of mosquitoes M(x), in millions, in a certain area depends on the June rainfall x, in inches: $M(x) = 9x - x^2$. What rainfall produces the maximum number of mosquitoes?

Write the statement as a power function equation. Use k as the constant of variation.

4) The height h of a cone with a fixed volume varies inversely as the square of its radius r.

Determine whether the power function is even, odd, or neither.

5)
$$f(x) = \frac{2}{3}x^{3/2}$$

6)
$$f(x) = -9x^{2/7}$$

Solve the problem. Use our multi-step process from our notes.

7) The weight of a liquid varies directly as its volume V. If the weight of the liquid in a cubical container 5 cm on a side is 375 g, find the weight of the liquid in a cubical container 4 cm on a side.

Describe the end behavior of the polynomial function by finding $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f(x)$

8)
$$f(x) = -x^3 - 7x^2 - 5x - 7$$

9)
$$f(x) = 2x^4 - 3x^2 - 4$$

Find a cubic function with the given zeros. Write eqn in standard form.

10)
$$\sqrt{2}$$
, $-\sqrt{2}$, 4

Solve the problem graphically. Show sketch and window.

11) A rectangular piece of cardboard measuring 25 inches by 44 inches is to be made into a box with an open top by cutting equal size squares from each corner and folding up the sides. Let x represent the length of a side of each such square. What is the maximum volume of this box? If necessary, round to 2 decimal places.

Use the Factor Theorem to determine whether the first polynomial is a factor of the second polynomial.

12)
$$x + 2$$
; $6x^3 + 9x^2 - 5x + 2$

13)
$$x + 5$$
; $6x^3 + 28x^2 - 11x + 5$

Use the Rational Zeros Theorem to write a list of all potential rational zeros

14)
$$f(x) = 14x^3 + 56x^2 + 2x - 7$$

Use synthetic division to determine whether the number k is an upper or lower bound (as specified) for the real zeros of the function f.

¹⁵⁾
$$k = 4$$
; $f(x) = 2x^3 - 2x^2 - 5x + 5$; Upper bound?

¹⁶⁾
$$k = 0$$
; $f(x) = x^3 + 5x^2 - 4x + 3$; Lower bound?

Write the polynomial in standard form and identify the zeros of the function $\frac{17}{12}$