Exploring Exponential Models

Without graphing, determine whether each equation represents exponential growth or exponential decay.

1.
$$y = 72(1.6)^x$$

2.
$$y = 24(0.8)^x$$

3.
$$y = 3\left(\frac{6}{5}\right)^3$$

3.
$$y = 3\left(\frac{6}{5}\right)^x$$
 4. $y = 7\left(\frac{2}{3}\right)^x$

Sketch the graph of each function. Identify the horizontal asymptote.

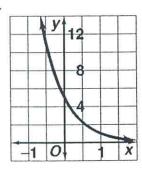
5.
$$y = (0.3)^x$$

6.
$$y = 3^x$$

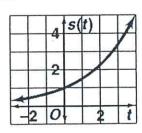
7.
$$y = 2\left(\frac{1}{5}\right)^x$$
 8. $y = \frac{1}{2}(3)^x$

8.
$$y = \frac{1}{2}(3)^x$$

- 9. A new car that sells for \$18,000 depreciates 25% each year. Write a function that models the value of the car. Find the value of the car after 4 yr.
- 10. A new truck that sells for \$29,000 depreciates 12% each year. Write a function that models the value of the truck. Find the value of the truck after 7 yr.
- 11. The bear population increases at a rate of 2% per year. There are 1573 bears this year. Write a function that models the bear population. How many bears will there be in 10 yr?
- 12. An investment of \$75,000 increases at a rate of 12.5% per year. Find the value of the investment after 30 yr.
- 13. The population of an endangered bird is decreasing at a rate of 0.75% per year. There are currently about 200,000 of these birds. Write a function that models the bird population. How many birds will there be in 100 yr?


Write an exponential function $y = ab^x$ for a graph that includes the given points.

14. (1,10), (2, 25)


For each annual rate of change, find the corresponding growth or decay factor.

Determine if the graph models an exponential growth or decay situation.

19.

20.

