Alg 2 5.5 Solve Quadratics by Graphing Use a graph to solve. NameHR\
1. A toy rocket is fired upward from the ground. The relation between its height h, in feet and the time t from launch, in seconds, can be described by the equation $h = -16t^2 + 64t$. Draw a sketch if the graph. $x = \pi n e$ (Seconds) $y = height (fe)$
a) What is the maximum height the rocket will reach? At what time will it reach the maximum height? 64 feet 2 see
b) How long is the rocket in the air? 4 seconds
c)What is a reasonable domain and range for this model?
D[0,4] R[0,64]
2. An archer's arrow follows a path described by the equation $y =005x^2 + 2x + 5$. Draw a sketch use fee of the graph. $x = t_{\text{true}}$ (sec) $y = height$ (feet)
a) What is the maximum height the rocket will reach? At what time will it reach the maximum height? b) How long is the rocket in the air?
b) How long is the rocket in the air? 402.48 see
c) What is a reasonable domain and range for this model? (c), 407.647 R [0, 205] 3. The expression $P(x) = 2500x - 2x^2$ describes the profit of a company that customizes bulldozers when it customizes x bulldozers in a month. Sketch the graph. $x = \# \ o + buildozers$ $y = profit$ (4) $y = profit$
a) What is the maximum profit in a month? How many bull dozers must they sell to reach the max? b) What is the range and domain? co, 1250] R [0, 781, 250] 4. Graph the following equation: $v = 4r^2 + 3r - 1$

a) Find the vertex $\left(-\frac{3}{8}, -\frac{35}{8}\right)$

b) Find the x intercepts. What do they represent? The solutions (1/4,0) (-1,0) are x=1/4 x=-1