Polynomials Part 1 Study guide.

I can classify polynomials by degree.

Describe each polynomial by degree.

1.
$$3x^5 - 4x^3 + 1$$

2.
$$-4x^4 + 3x^3 - 2x^2 - 1$$

3.
$$5x + 2x^2$$

I can classify polynomials by the number of terms.

Describe each polynomial by number of terms.

4.
$$4x^3$$

5.
$$5x^5 - 2x^4 + 3x^2 - 2x$$

6.
$$x^2 - 3x + 2$$

I can write polynomials in standard form

7. Write in standard form: $3x^2 + 2x^3 - 2x - 2x(2x^3 - 3x^2 + 4x + 1)$

I can write polynomials in standard form from its given zeroes.

8. Write a polynomial equation, in standard form with zeros: x = 2 multiplicity 2, -4 I can solve polynomials, find maximum and minimum values, and then sketch a graph.

9. Solve:
$$y = 2x^4(x+4)^3(3x+1)^2$$

10. Solve without graphing: $3x^4 + 6x^3 - 9x^2 = 0$ Then sketch a graph.

11. Solve and find any maximums or minimums for $y = x^3 + 2x^2 - 5x - 6$.

I can use polynomials to model real life data and applications.

- 12. A company creates packages by cutting equal squares from each corner of a 24" x 18" cardboard. Write an equation for the volume of the box in standard Form.
- 13. The table below shows the percent of U.S. houses with cable TV.

Television Cable Access

Year	1960	1970	1980	1990	2000
% of Households	0	7	20	56	68

- a) Write a quartic model for the data.
- b) Use the quartic model to predict the percent of households with cable access in 2013. Is this a good model for this year? Explain.
- c) Which year would the percent of households with cable access be 75%?
- **14.** The length of a portable dog kennel is 7 inches longer than the width. The height is one inch shorter than the width. Write an equation for the volume of the kennel in standard form.